scispace - formally typeset
Search or ask a question
Topic

Shared resource

About: Shared resource is a research topic. Over the lifetime, 7536 publications have been published within this topic receiving 123491 citations. The topic is also known as: network share.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper compares two working network-based file servers, the Xerox Distributed File System (XDFS) implemented at the Xerx Palo Alto Research Center, and the Cambridge File Server (CFS) implemented by the Cambridge University Computer Laboratory.
Abstract: This paper compares two working network-based file servers, the Xerox Distributed File System (XDFS) implemented at the Xerox Palo Alto Research Center, and the Cambridge File Server (CFS) implemented at the Cambridge University Computer Laboratory. Both servers support concurrent random access to files using atomic transactions, both are connected to local area networks, and both have been in service long enough to enable us to draw lessons from them for future file servers.We compare the servers in terms of design goals, implementation issues, performance, and their relative successes and failures, and discuss what we would do differently next time.

84 citations

Journal ArticleDOI
04 Aug 2014
TL;DR: This paper provides a definition for Cloud, Jungle and Fog computing, and the key characteristics of them are determined; their architectures are illustrated and several main use cases are introduced.
Abstract: The distributed computing attempts to improve performance in large-scale computing problems by resource sharing. Moreover, rising low-cost computing power coupled with advances in communications/networking and the advent of big data, now enables new distributed computing paradigms such as Cloud, Jungle and Fog computing. Cloud computing brings a number of advantages to consumers in terms of accessibility and elasticity. It is based on centralization of resources that possess huge processing power and storage capacities. Fog computing, in contrast, is pushing the frontier of computing away from centralized nodes to the edge of a network, to enable computing at the source of the data. On the other hand, Jungle computing includes a simultaneous combination of clusters, grids, clouds, and so on, in order to gain maximum potential computing power. To understand these new buzzwords, reviewing these paradigms together can be useful. Therefore, this paper describes the advent of new forms of distributed computing. It provides a definition for Cloud, Jungle and Fog computing, and the key characteristics of them are determined. In addition, their architectures are illustrated and, finally, several main use cases are introduced.

84 citations

Proceedings ArticleDOI
03 Dec 2007
TL;DR: This work presents (and proves the correctness of) algorithms that address the major issues that must be addressed in order to solve the problem of executing a collection of independently designed and validated task systems upon a common platform comprised of a preemptive processor and additional shared resources.
Abstract: We study the problem of executing a collection of independently designed and validated task systems upon a common platform comprised of a preemptive processor and additional shared resources. We present an abstract formulation of the problem and identify the major issues that must be addressed in order to solve this problem. We present (and prove the correctness of) algorithms that address these issues, and thereby obtain a design for an open real-time environment in the presence of shared global resources.

83 citations

Patent
04 Aug 2009
TL;DR: A peer-to-peer file sharing system as mentioned in this paper ascribing a uniquely identified and anonymous link (an "edgelink") to any file or set of files on a peer computer.
Abstract: A system and method for efficient and private peer-to-peer file sharing consists of ascribing a uniquely identified and anonymous link (an “edgelink”) to any file or set of files on a peer computer. The link is registered with a publishing server along with continuously updated connectivity information about the peer without registering any identifying information about the file. A peer recipient is able to access the link, receive connectivity information about the publishing peer from the server, and then receive the file from the publishing peer without file content passing through the server, mediating any intermediary NAT devices without requiring any manual or automatic device reconfiguration.

83 citations

Patent
24 Jan 2000
TL;DR: In this paper, the authors describe a streaming multimedia rendering system having a network client and a network server that form part of a hyperlink web such as the Internet, where each resource specifier designates a transport protocol.
Abstract: The invention includes a streaming multimedia rendering system having a network client and a network server that form part of a hyperlink web such as the Internet. In accordance with the invention, a hyperlink to multimedia content is actually an indirect link to a reference file. The reference file contains a plurality of different resource specifiers and a preferred order for attempting communications using the resource specifiers. Each resource specifier designates a transport protocol. A streaming data client open the resource file in response to activation of a hyperlink to the resource file. In response to the resource specifiers contained in the resource file, the network data client repeatedly attempts to establish a streaming data connection using the different resource specifiers, in the preferred order specified in the reference file, or in the preferred order specified by a file referenced by the reference file, until a streaming data connection is successfully established. Each attempt with a different resource specifier uses the transport protocol designated by that different resource specifier. Different types of protocol specifiers are available. Some of the protocol specifiers override configuration settings made at the network data client relating to which transport protocols are permitted.

83 citations


Network Information
Related Topics (5)
The Internet
213.2K papers, 3.8M citations
84% related
Information system
107.5K papers, 1.8M citations
83% related
Software
130.5K papers, 2M citations
80% related
Network packet
159.7K papers, 2.2M citations
78% related
Wireless network
122.5K papers, 2.1M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202381
2022194
2021223
2020298
2019381
2018373