scispace - formally typeset
Search or ask a question
Topic

Shear flow

About: Shear flow is a research topic. Over the lifetime, 17591 publications have been published within this topic receiving 524031 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors developed a model of turbulence in which the Reynolds stresses are determined from the solution of transport equations for these variables and for the turbulence energy dissipation rate E. Particular attention is given to the approximation of the pressure-strain correlations; the forms adopted appear to give reasonably satisfactory partitioning of the stresses both near walls and in free shear flows.
Abstract: The paper develops proposals for a model of turbulence in which the Reynolds stresses are determined from the solution of transport equations for these variables and for the turbulence energy dissipation rate E. Particular attention is given to the approximation of the pressure-strain correlations; the forms adopted appear to give reasonably satisfactory partitioning of the stresses both near walls and in free shear flows. Numerical solutions of the model equations are presented for a selection of strained homogeneous shear flows and for two-dimensional inhomogeneous shear flows including the jet, the wake, the mixing layer and plane channel flow. In addition, it is shown that the closure does predict a very strong influence of secondary strain terms for flow over curved surfaces.

3,855 citations

Book
19 Dec 1975
TL;DR: In this paper, the authors present a method to find the optimal set of words for a given sentence in a sentence using the Bibliogr. Index Reference Record created on 2004-09-07, modified on 2016-08-08
Abstract: Note: Bibliogr. : p. 413-424. Index Reference Record created on 2004-09-07, modified on 2016-08-08

3,758 citations

MonographDOI
01 Jan 1972
TL;DR: In this article, the authors discuss the Reynolds equations and estimate of the Reynolds stress in the kinetic theory of gases, and describe the effects of shear flow near a rigid wall.
Abstract: This chapter contains sections titled: The Reynolds equations, Elements of the kinetic theory of gases, Estimates of the Reynolds stress, Turbulent heat transfer, Turbulent shear flow near a rigid wall

3,270 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that a sphere moving through a very viscous liquid with velocity V relative to a uniform simple shear, the translation velocity being parallel to the streamlines and measured relative to streamline through the centre, experiences a lift force 81·2μVa2k½/v½ + smaller terms perpendicular to the flow direction, which acts to deflect the particle towards the streamline moving in the direction opposite to V.
Abstract: It is shown that a sphere moving through a very viscous liquid with velocity V relative to a uniform simple shear, the translation velocity being parallel to the streamlines and measured relative to the streamline through the centre, experiences a lift force 81·2μVa2k½/v½ + smaller terms perpendicular to the flow direction, which acts to deflect the particle towards the streamlines moving in the direction opposite to V. Here, a denotes the radius of the sphere, κ the magnitude of the velocity gradient, and μ and v the viscosity and kinematic viscosity, respectively. The relevance of the result to the observations by Segree & Silberberg (1962) of small spheres in Poiseuille flow is discussed briefly. Comments are also made about the problem of a sphere in a parabolic velocity profile and the functional dependence of the lift upon the parameters is obtained.

2,912 citations

Journal ArticleDOI
TL;DR: In this article, a two-equation model and Reynolds stress transport model are developed for turbulent shear flows and tested for homogeneous shear flow and flow over a backward facing step.
Abstract: Turbulence models are developed by supplementing the renormalization group (RNG) approach of Yakhot and Orszag [J. Sci. Comput. 1, 3 (1986)] with scale expansions for the Reynolds stress and production of dissipation terms. The additional expansion parameter (η≡SK/■) is the ratio of the turbulent to mean strain time scale. While low‐order expansions appear to provide an adequate description for the Reynolds stress, no finite truncation of the expansion for the production of dissipation term in powers of η suffices−terms of all orders must be retained. Based on these ideas, a new two‐equation model and Reynolds stress transport model are developed for turbulent shear flows. The models are tested for homogeneous shear flow and flow over a backward facing step. Comparisons between the model predictions and experimental data are excellent.

2,347 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
87% related
Turbulence
112.1K papers, 2.7M citations
86% related
Phase (matter)
115.6K papers, 2.1M citations
81% related
Particle
96.5K papers, 1.9M citations
80% related
Polymer
131.4K papers, 2.6M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023106
2022247
2021316
2020347
2019417
2018432