Topic
Shear strength
About: Shear strength is a research topic. Over the lifetime, 15434 publications have been published within this topic receiving 235814 citations.
Papers published on a yearly basis
Papers
More filters
TL;DR: In this paper, the authors present a review of current anchorage strength models for both fiber-reinforced polymer (FRP) and steel-to-concrete bonded joints under shear and propose a new simple and rational model based on an existing fracture mechanics analysis and experimental observations.
Abstract: External bonding of steel plates has been used to strengthen deficient reinforced-concrete structures since the 1960s. In recent years, fiber-reinforced polymer (FRP) plates have been increasingly used to replace steel plates due to their superior properties. A key issue in the design of an effective retrofitting solution using externally bonded plates is the end anchorage strength. This paper first presents a review of current anchorage strength models for both FRP-to-concrete and steel-to-concrete bonded joints under shear. These models are then assessed with experimental data collected from the literature, revealing the deficiencies of all existing models. Finally, a new simple and rational model is proposed based on an existing fracture mechanics analysis and experimental observations. This new model not only matches experimental observations of bond strength closely, but also correctly predicts the effective bond length. The new model is thus suitable for practical application in the design of FRP-to-concrete as well as steel-to-concrete bonded joints.
1,050 citations
TL;DR: Room temperature (TR) elastic constants and compressive yield strengths of approximately 30 metallic glasses reveal an average shear limit gammaC, where tauY=gamma CG is the maximum resolved shear stress at yielding, and G the shear modulus.
Abstract: Room temperature (TR) elastic constants and compressive yield strengths of ~30 metallic glasses reveal an average shear limit gammaC=0.0267±0.0020, where tauY=gammaCG is the maximum resolved shear stress at yielding, and G the shear modulus. The gammaC values for individual glasses are correlated with t=TR/Tg, and gammaC for a single glass follows the same correlation (vs t=T/Tg). A cooperative shear model, inspired by Frenkel's analysis of the shear strength of solids, is proposed. Using a scaling analysis leads to a universal law tauCT/G=gammaC0-gammaC1(t)2/3 for the flow stress at finite T where gammaC0=(0.036±0.002) and gammaC1=(0.016±0.002).
1,041 citations
TL;DR: In this paper, the degree of fiber-matrix adhesion and its effect on the mechanical reinforcement of short henequen fibers and a polyethylene matrix was studied, and the surface treatments were: an alkali treatment, a silane coupling agent and the pre-impregnation process of the HDPE/xylene solution.
Abstract: The degree of fiber–matrix adhesion and its effect on the mechanical reinforcement of short henequen fibers and a polyethylene matrix was studied. The surface treatments were: an alkali treatment, a silane coupling agent and the pre-impregnation process of the HDPE/xylene solution. The presence of Si–O–cellulose and Si–O–Si bonds on the lignocellulosic surface confirmed that the silane coupling agent was efficiently held on the fibres surface through both condensation with cellulose hydroxyl groups and self-condensation between silanol groups. The fiber–matrix interface shear strength (IFSS) was used as an indicator of the fiber–matrix adhesion improvement, and also to determine a suitable value of fiber length in order to process the composite with relative ease. It was noticed that the IFSS observed for the different fiber surface treatments increased and such interface strength almost doubled only by changing the mechanical interaction and the chemical interactions between fiber and matrix. HDPE-henequen fiber composite materials were prepared with a 20% v/v fiber content and the tensile, flexural and shear properties were studied. The comparison of tensile properties of the composites showed that the silane treatment and the matrix-resin pre-impregnation process of the fiber produced a significant increase in tensile strength, while the tensile modulus remained relatively unaffected. The increase in tensile strength was only possible when the henequen fibers were treated first with an alkaline solution. It was also shown that the silane treatment produced a significant increase in flexural strength while the flexural modulus also remained relatively unaffected. The shear properties of the composites also increased significantly, but, only when the henequen fibers were treated with the silane coupling agent. Scanning electron microscopy (SEM) studies of the composites failure surfaces also indicated that there is an improved adhesion between fiber and matrix. Examination of the failure surfaces also indicated differences in the interfacial failure mode. With increasing fiber–matrix adhesion the failure mode changed from interfacial failure and considerable fiber pull-out from the matrix for the untreated fiber to matrix yielding and fiber and matrix tearing for the alkaline, matrix-resin pre-impregnation and silane treated fibers.
769 citations
TL;DR: In this paper, an alkaline treatment was used to enhance both the matrix fiber wetting and the chemical surface modification in order to improve the physicochemical interactions at the fiber-matrix interphase.
Abstract: The interfacial shear strength (IFSS) between natural fibers and a thermoplastic matrix has been improved by the morphological and silane chemical modification of the fiber surface. An alkaline treatment was used to enhance both the matrix fiber wetting and the chemical surface modification in order to improve the physicochemical interactions at the fiber–matrix interphase. For characterization of the mechanical properties of such interphase, a modification of the micromechanical techniques commonly used in the characterization of the IFSS for circular-cross-section smooth fibers is proposed. The relationships developed for circular fibers were modified to incorporate the natural fiber perimeter instead of an equivalent fiber diameter. From the micromechanical test's results it was found that both surface modifications, preimpregnation and chemical, improves the fiber–matrix IFSS. Finally, the results obtained from the single fiber fragmentation test seem to better agree with the effective mechanical properties measured for the laminated material than those obtained with the pull out test.
735 citations
TL;DR: In this paper, the analysis of the orthogonal cutting with a type 2 chip is extended by introducing those physical properties of the work material which control its plastic behavior, and a simple additional plasticity condition is obtained by application of the principle of minimum energy.
Abstract: The analysis of the mechanics of orthogonal cutting with a type 2 chip as presented in the first paper of this series can be extended by introducing those physical properties of the work material which control its plastic behavior. One evident plasticity condition is the equality of the shear stress on the plane of shear to the shear strength of the metal. If it is also assumed that the shear strength of the work material is a constant and is the only quantity controlling its plastic behavior, then a very simple additional plasticity condition is obtained by application of the principle of minimum energy. This condition is 2φ+τ−α=90°, where φ is the shear angle, τ the friction angle, and α the rake angle. This condition, however, is found by experiment to be a poor approximation in the case of polycrystalline metals. A very good approximation is obtained, though, if use is made of the fact that the shear strength of the polycrystalline metal is actually a function of the compressive stress on the shear pl...
725 citations