scispace - formally typeset
Search or ask a question

Showing papers on "Shear stress published in 2012"


Journal ArticleDOI
TL;DR: In this paper, a new ductile fracture criterion is proposed to model fracture behavior of sheet metals for nucleation, growth and shear coalescence of voids during plastic deformation.

388 citations


Journal ArticleDOI
TL;DR: In this article, a rheological model and a thermodynamic model are proposed for describing the melting of an ultrathin lubricant film between atomically flat solid surfaces, allowing for the stress and strain dependence of the lubricant shear modulus.
Abstract: A rheological model and a thermodynamic model are proposed for describing the melting of an ultrathin lubricant film between atomically flat solid surfaces. Hysteresis phenomena are considered, allowing for the stress and strain dependence of the lubricant shear modulus. The self-similar regime of lubricant melting is studied taking the additive noncorrelated noise of basic parameters into account. The regions of dry, sliding, and stick-slip friction are determined in the phase diagram. Shear stress time series are obtained by numerically analyzing the Langevin equation and are then subjected to multifractal fluctuation analysis. The dependence of the stationary friction force on the lubricant temperature and on the shear velocity of rubbing surfaces is investigated.

386 citations


Journal ArticleDOI
TL;DR: In this article, the authors distinguish Discontinuous Shear Thickening from inertial effects by showing that the latter are characterized by a Reynolds number but are only found for lower packing fractions and higher shear rates than the former.
Abstract: Many densely packed suspensions and colloids exhibit a behavior known as Discontinuous Shear Thickening in which the shear stress jumps dramatically and reversibly as the shear rate is increased. We performed rheometry and video microscopy measurements on a variety of suspensions to determine the mechanism for this behavior. We distinguish Discontinuous Shear Thickening from inertial effects by showing that the latter are characterized by a Reynolds number but are only found for lower packing fractions and higher shear rates than the former. Shear profiles and normal stress measurements indicate that, in the shear thickening regime, stresses are transmitted through frictional rather than viscous interactions. We come to the surprising conclusion that for concentrated suspensions such as cornstarch in water which exhibit the phenomenon of Discontinuous Shear Thickening, the local constitutive relation between stress and shear rate is not necessarily shear thickening. If the suspended particles are heavy en...

275 citations


Journal ArticleDOI
TL;DR: In this paper, the two physical mechanisms of slip are discussed and validated on the basis of published experimental data and their significance on the rheology and flow simulations of molten polymers is discussed.

264 citations


Journal ArticleDOI
TL;DR: In this article, the volume-of-fluid method is used to calculate the free surface shape of the keyhole and a ray-tracing algorithm is used in conjunction with a ray tracing algorithm to estimate multiple reflections.

254 citations


Journal ArticleDOI
TL;DR: It is shown that vesicles made from an artificial 1,3-diaminophospholipid are stable under static conditions but release their contents at elevated shear stress, which potentially leads to instabilities along their equator.
Abstract: Atherosclerosis results in the narrowing of arterial blood vessels and this causes significant changes in the endogenous shear stress between healthy and constricted arteries. Nanocontainers that can release drugs locally with such rheological changes can be very useful. Here, we show that vesicles made from an artificial 1,3-diaminophospholipid are stable under static conditions but release their contents at elevated shear stress. These vesicles have a lenticular morphology, which potentially leads to instabilities along their equator. Using a model cardiovascular system based on polymer tubes and an external pump to represent shear stress in healthy and constricted vessels of the heart, we show that drugs preferentially release from the vesicles in constricted vessels that have high shear stress.

241 citations


Journal ArticleDOI
TL;DR: The boundary layers over a continuously stretching sheet with a power law surface velocity were revisited for a sheet with variable thickness and the non-flatness of the stretching surface has significant impacts on the boundary layer development along the wall, on the velocity profiles, and on the shear stress distribution in the fluid.

228 citations


Book
20 May 2012
TL;DR: In this paper, the authors proposed a method for the detection of residual stresses in composite glass by using the Scattered Light Method with Unpolarized Incident Light (SLM) and the Babinet-Soleil Compensators.
Abstract: One The Basics of Photoelasticity and Glass.- 1 Basic Elasticity.- 1.1 Elasticity.- 1.2 Force and Stress.- 1.3 Plane Stress.- 1.4 Equations of Equilibrium.- 1.5 Boundary Conditions.- 1.6 Strain.- 1.7 Relations Between Stresses and Strains.- 1.8 Plane Strain.- 1.9 Equations of Compatibility.- 1.10 Stress Function.- 2 Residual Stresses in Glass.- 2.1 Introduction.- 2.2 Dependence of the Mechanical Strength on Residual Stresses.- 2.3 Stresses Due to Indentations.- 2.4 Residual Stresses Due to Thermal Annealing or Tempering.- 2.4.1 The First Approaches.- 2.4.2 The Viscoelastic Theory.- 2.4.3 The Structural Theory.- 2.4.4 Membrane Stresses and Form Stresses.- 2.4.5 Stress Redistribution by Cutting.- 2.5 Stresses Due to Chemical Tempering.- 2.5.1 Stress Buildup.- 2.5.2 Strengthening of Glass.- 2.6 Stresses Created in Glass by Radiations.- 2.6.1 Corpuscular Radiation.- 2.6.2 Electromagnetic Radiation.- Thermal Effects.- Color Centers.- 2.7 Stresses Due to Heterogeneities.- 2.8 Stresses in Composite Glass Articles.- 2.8.1 Stresses in Glazes and Enamels.- 2.8.2 Stresses in Optical Fibers.- 2.8.3 Stresses in Glass-Metal and Glass-Ceramic Seals.- 2.8.4 Stresses Due to Inclusions.- 3 Basic Photoelasticity.- 3.1 Polarized Light.- 3.1.1 Nature of Light.- 3.1.2 Natural and Polarized Light.- 3.1.3 Different Descriptions of Polarized Light.- 3.2 Artificial Double Refraction.- 3.3 Stress-Optic Law.- 3.4 The Plane Polariscope.- 3.5 The Circular Polariscope.- 3.6 Use of Double-Exposure Photography for the Elimination of the Isoclinics.- 3.7 Construction of Polariscopes.- 3.8 Measurement of Optical Retardation.- 3.8.1 Color Matching.- 3.8.2 Polariscope with a Tint Plate.- 3.8.3 The Babinet and Babinet-Soleil Compensators.- 3.8.4 Senarmont Method.- 3.8.5 The Azimuth Method.- 4 Two-Dimensional Photoelasticity.- 4.1 General.- 4.2 Stress Trajectories.- 4.3 Separation of Principal Stresses.- 4.3.1 Oblique Incidence Method.- 4.3.2 Shear Difference Method.- 4.3.3 Numerical Solution of the Compatibility Equation.- 4.3.4 Methods Based on Hooke's Law.- 4.4 Superposition of States of Stress.- 4.5 Determination of the Photoelastic Constant.- 5 The Scattered Light Method.- 5.1 Introduction.- 5.2 Scattering of Light.- 5.3 The Scattered Light Method with Polarized Incident Light.- 5.4 The Scattered Light Method with Unpolarized Incident Light.- 5.5 Using Interference of Coherent Scattered Light Beams.- 6 Integrated Photoelasticity.- 6.1 Introduction.- 6.2 Principle of Integrated Photoelasticity.- 6.3 Basic Equations.- 6.4 Theory of Characteristic Directions.- 6.5 Symmetric Photoelastic Media.- 6.6 The Case of Constant Principal Stress Axes.- 6.7 The Case of Weak Birefringence.- 6.8 Integrated Photoelasticity as Optical Tomography of the Stress Field.- 6.9 Investigation of the General Three-Dimensional State of Stress.- 6.10 Axisymmetric State of Stress Due to External Loads.- 7 Photoelastic Properties of Glass.- 7.1 Introduction.- 7.2 Discovery of the Photoelastic Effect in Glass.- 7.3 Influence of the Glass Composition.- 7.4 Theories of the Photoelastic Effect.- 7.5 Influence of the Temperature and of the Thermal History.- 7.6 Dependence of the Photoelastic Constant on Wavelength.- 7.7 Anomalous Birefringence.- Two Stress Analysis in Flat Glass.- 8 Thickness Stresses.- 8.1 Different Kinds of Thickness Stresses.- 8.2 Measurement of Thickness Stresses.- 8.2.1 Using the Bending of the Light Rays.- 8.2.2 Conventional Photoelasticity.- 9 Membrane Stresses.- 9.1 Introduction.- 9.2 Uniaxial Membrane Stresses.- 9.2.1 Edge Stresses.- 9.2.2 Stresses Across a Ribbon.- 9.3 Bidimensional Membrane Stresses.- 10 Determination of the Total Stresses.- 10.1 Introduction.- 10.2 The Measurement of Surface Stresses.- 10.2.1 Differential Refractometry.- 10.2.2 The "Mirage" Methods.- Observation of the Guided Waves Close to the Surface.- The Case of Flat Samples.- The Case of Curved Samples.- The Case of Stress Gradient Near the Surface.- Observation of the Guided Waves at Infinity.- Theory of the Differential Refractometry with Guided Waves.- Linear Index Profile.- Determination of Stresses.- An Example.- Alternative Numerical Methods.- Curved Surface.- Thermally Tempered Glass.- 10.3 Measurement of Total Residual Stresses.- 10.3.1 The Scattered Light Method.- Spatial Modulation Method.- Phase Modulation Method.- 10.3.2 Magnetophotoelasticity.- Three Stresses in Glass Articles of Complicated Shape.- 11 Axisymmetric Glass Articles.- 11.1 General Case of Axisymmetric Residual Stress Distribution.- 11.1.1 Peculiarities of the Determination of the Residual Stress.- 11.1.2 Determination of the Axial and Shear Stress Distributions.- 11.1.3 Additional Tomographic Measurements.- 11.2 Application of the Equilibrium and Boundary Conditions.- 11.3 Stresses on the External Surface.- 11.4 Average Value of the Circumferential Stress.- 11.5 Stresses in Long Cylinders.- 11.6 Spherical Symmetry.- 11.6.1 Stress Distribution in Spheres.- 11.6.2 Quenching Stresses Around a Spherical Inclusion.- 11.7 Bending of Light Rays.- 11.8 Determination of the Components of the Dielectric Tensor.- 11.9 Optimization of the Number of Terms in Stress Polynomials.- 11.10 Experimental Technique.- 11.10.1 Polariscopes.- 11.10.2 Immersion Technique.- 11.10.3 The Case of Mismatching Immersion.- 11.11 Examples.- 11.11.1 Quenched Long Cylinder.- 11.11.2 An Article of Optical Glass.- 11.11.3 High Voltage Insulator.- 11.11.4 Closed Tube.- 11.11.5 Two Bonded Tubes.- 12 Containers and Other Thin-Walled Glassware.- 12.1 Introduction.- 12.2 Traditional Methods.- 12.3 Determination of Stress in Cylindrical Part of the Container.- 12.4 Axial Stress in an Arbitrary Section.- 12.5 Determination of the Stresses Due to the Internal Pressure.- 12.6 Sandwich Glassware.- 12.7 Examples.- 12.7.1 A Champagne Bottle.- 12.7.2 A Beer Bottle.- 12.7.3 Tumbler N 1.- 12.7.4 Tumbler N 2.- 12.7.5 Salad Bowl.- 12.7.6 Electric Lamp.- 12.7.7 Ampule of a Fire Extinguisher System.- 13 Optical Fibers and Fiber Preforms.- 13.1 Introduction.- 13.2 Axisymmetric Fibers and Fiber Preforms.- 13.2.1 Refractive Index Profiles.- 13.2.2 Determination of the Stress Distribution.- 13.2.3 Application of the Method of Oblique Incidence.- 13.2.4 Examples.- 13.3 Fiber Preforms of Arbitrary Cross Section.- 13.3.1 Determination of the Axial Stress Distribution.- 13.3.2 Determination of Other Stress Components.- 13.3.3 Internal Rotation of the Birefringence Axes in Polarization-Holding Fibers.- 13.3.4 Examples.- Author Index.

187 citations


Journal ArticleDOI
TL;DR: In this article, the effects due to temperature and shearing time on viscosity for Al2O3/water and CNT/water based nanofluids at low concentration and low temperatures are experimentally investigated.

184 citations


Journal ArticleDOI
TL;DR: In this paper, a particle flow code 2D (PFC2D) was adopted to simulate the shear behavior of rock-like material samples containing planar non-persistent joints.
Abstract: Particle flow code 2D (PFC2D) was adopted to simulate the shear behavior of rocklike material samples containing planar non-persistent joints. Direct shear loading was conducted to investigate the effect of joint separation on the failure behavior of rock bridges. Initially calibration of PFC was undertaken with respect to the data obtained from experimental laboratory tests to ensure the conformity of the simulated numerical models response. Furthermore, validation of the simulated models were cross checked with the results of direct shear tests performed on non-persistent jointed physical models. Through numerical direct shear tests, the failure process was visually observed, and the failure patterns were found reasonably similar to the experimentally observed trends. The discrete element simulations demonstrated that the macro-scale shear zone resulted from the progressive failure of the tension-induced micro-cracks. The failure pattern was mostly influenced by joint separation, while the shear strength was linked to the failure pattern and failure mechanism. Furthermore, it was observed that the failure zone is relatively narrow and has a symmetrical pattern when rock bridges occupy a low percentage of the total shear surface. This may be due to the high stress interactions between the subsequent joints separated by a rock bridge. In contrast, when rock bridges are occupying sufficient area prohibiting the stress interactions to occur then the rupture of surface is more complex and turns into a shear zone. This zone was observed to be relatively thick with an unsymmetrical pattern. The shear strength of rock bridges is reduced by increasing the joint length as a result of increasing both the stress concentration at tip of the joints and the stress interaction between the joints.

171 citations


Journal ArticleDOI
TL;DR: It is concluded that even when exposed to high flow rates, there are spot regions along the AVF exposed to athero-prone shear stress that favour vessel stenosis by triggering IH.
Abstract: Background. Despite recent clinical and technological advancements, the vascular access (VA) for haemodialysis still has significant early failure rates after arteriovenous fistula (AVF) creation. VA failure is mainly related to the haemodynamic conditions that trigger the phenomena of vascular wall disease such as intimal hyperplasia (IH) or atherosclerosis. Methods. We performed transient computational fluid dynamics simulations within idealized three-dimensional models of ‘end-to-side’ and ‘end-to-end’ radio-cephalic anastomosis, using non-Newtonian blood and previously measured flows and division ratio in subjects requiring primary access procedure as boundary conditions. Results. The numerical simulations allowed full characterization of blood flow inside the AVF and of patterns of haemodynamic shear stress, known to be the major determinant of vascular remodelling and disease. Wall shear stress was low and oscillating in zones where flow stagnation occurs on the artery floor and on the inner wall of the juxta-anastomotic vein. Conclusions. Zones of low and oscillatory shear stress were located in the same sites where luminal reduction was documented in previous experimental studies on sites stenosis distribution in AVF. We conclude that even when exposed to high flow rates, there are spot regions along the AVF exposed to athero-prone shear stress that favour vessel stenosis by triggering IH.

Journal ArticleDOI
TL;DR: Results of the current analysis support the 1000 N limit for shear stress, but for a rather limited number of cycles (<100 per day), and a 700 N shear limit would appear to be acceptable for frequent shear loadings (100-1000 per day).

Journal ArticleDOI
TL;DR: A refined shear deformation theory for free vibration of functionally graded plates on elastic foundation is developed in this paper, where the displacement field is chosen based on assumptions that the in-plane and transverse displacements consist of bending and shear components, and the shear component gives rise to the parabolic variation of shear strain through the thickness in such a way that shear stresses vanish on the plate surfaces.
Abstract: A refined shear deformation theory for free vibration of functionally graded plates on elastic foundation is developed. The displacement field is chosen based on assumptions that the in-plane and transverse displacements consist of bending and shear components, and the shear components of in-plane displacements give rise to the parabolic variation of shear strain through the thickness in such a way that shear stresses vanish on the plate surfaces. Therefore, there is no need to use shear correction factor. Material properties of functionally graded plate are assumed to vary according to power law distribution of the volume fraction of the constituents. The elastic foundation is modeled as Pasternak foundation. Equations of motion are derived using Hamilton’s principle. Closed-form solution of rectangular plates is derived, and the obtained results are compared well with three-dimensional elasticity solutions and third-order shear deformation theory solutions. Finally, the influences of power law index, thickness ratio, foundation parameter, and boundary condition on the natural frequency of plates have been investigated.

Journal ArticleDOI
TL;DR: In this article, the small-strain dynamic properties of mixtures composed of sandy and gravelly soils with granulated tire rubber in terms of shear modulus (GO), and damping ratio in shear (Dmin) were examined.
Abstract: This study examines the small-strain dynamic properties of mixtures composed of sandy and gravelly soils with granulated tire rubber in terms of shear modulus (GO), and damping ratio in shear (Dmin). Torsional resonant column tests are performed on dry, dense specimens of soil-rubber mixtures in a range of soil to rubber particles size 5:1–1:10 and rubber content from 0 to 35% by mixture weight. The experimental results indicate that the response of the mixtures is significantly affected by the content of rubber and the relative size of rubber to soil particles. Concering the small-strain shear modulus, an equivalent void ratio is introduced that considers the volume of rubber particles as part of the total volume of voids. Based on a comprehensive set of test results a series of equations were developed that can be used to evaluate the shear modulus and damping ratio at small shear strain levels if the confining pressure, the content of rubber by mixture weight, the grain size of soil and rubber particles, and the dynamic and physical properties of the intact soil are known.

Journal ArticleDOI
TL;DR: In this paper, the electrochemical corrosion behavior of carbon steel under dynamic high pressure of H2S/CO2 environment was studied by in situ electrochemical measurements and weight loss measurements.

Journal ArticleDOI
TL;DR: In this paper, a model of biofilm structure underlying the stratified character of this aggregate was given in terms of density and cohesion, and the authors showed the presence of a compact basal layer that resisted shear stresses as high as 13Pa.

Journal ArticleDOI
TL;DR: In this paper, the authors examined the effect of spacer orientation, inlet velocity and filament spacing on shear stress distribution and temperature polarization in membrane distillation modules and found that spacer filaments touch the top or bottom surfaces of membrane, the temperature polarization is high which results in low heat transfer rates.

Journal ArticleDOI
TL;DR: The existence of an indentation size effect (ISE) in the onset of yield in a Zr-based bulk metallic glass (BMG) was investigated by employing spherical-tip nanoindentation experiments.

Journal ArticleDOI
TL;DR: The profile of shear moduli through the depth displayed a significant increase from posterior to anterior, and this gradient supports the hypothesis and corresponds to the gradient of interwoven lamellae seen in imaging of stromal cross-sections.
Abstract: Thorough characterization of the mechanical properties of connective tissue, including the cornea, presents significant theoretical and experimental challenges. To date, mechanical testing of the cornea has been almost exclusively focused on estimating the tensile modulus of the stroma using techniques such as strip tensile tests or cornea pressure-inflation tests.1–4 However, even in the most simple of material models there are at a minimum two elastic constants that must be measured to characterize the three-dimensional elastic behavior of the material. This most simple case is called isotropic elasticity5 and occurs when the material properties under investigation exhibit no dependence on direction during testing. In this case, the material is fully characterized by the Young's modulus and the shear modulus. The shear modulus naturally measures the resistance of the tissue to shearing strains. In fact, the microstructure of the corneal stroma suggests that its elasticity cannot be isotropic. The parallel arrays of collagen fibrils within each lamella and the layering of lamellae one on another imply that the transverse (anterior-posterior) properties of the tissue will be different from the in-plane properties. To address this anisotropy and other considerations, increasingly complex elasticity models have been introduced with the goal of achieving greater fidelity to the full three-dimensional behavior of the tissue.6–8 More complex models always have more than two intrinsic elastic constants that need to be measured. When such models are extended to nonlinear behavior, yet more constants must necessarily be introduced (Petsche SJ, et al., manuscript submitted, 2012).6,8 Experimental measurement of elastic constants must be interpreted against an assumed elasticity model (i.e., material symmetry). Transversely isotropic linear elasticity5 is the simplest possible model that can reasonably be applied to the corneal stroma. Materials exhibiting transverse isotropy have a single plane of material isotropy (the corneal tangent plane) and properties in this plane will be different from properties measured orthogonally (through the corneal thickness). In this case, characterization of the material elasticity requires the measurement of five independent elastic constants: the in-plane Young's modulus (related to the tensile modulus) and transverse Young's modulus, the in-plane and transverse Poisson's ratios, and the transverse shear modulus, denoted G.5 To appreciate the role of the transverse shear modulus, consider the anterior and posterior surfaces of a circular stromal button subjected to relative torsional twisting about an axis perpendicular to the surfaces (see Fig. 4). The tissue will become deformed in a state of pure transverse shear strain and the resistance of the tissue will be dependent only on the transverse shear modulus G. Experimental measurement of the shear properties of human corneas are missing from the extant literature. A thesis by Nickerson9 discusses the use of torsional rheometry to measure shear properties of porcine cornea. Standard inflation and strip testing1–4 do not introduce shearing deformations and these tests therefore give no information about shear stiffness. Figure 4. Typical stress/strain curve from a final load cycle used for calculating the magnitude of the complex shear modulus. The inset cartoon shows the applied torque and resulting shear strain (γ) on a cornea button, which is maximum at the perimeter. ... Because the corneal stroma makes up 90% of the tissue's thickness and contains almost all the cornea's collagen and proteoglycan content, it is the crucial layer for explaining corneal stiffness. The stroma consists of 200 to 500 sheet-like lamellae, each made up of collagen fibrils maintained at quasi-uniform spacing for transparency by the glycosaminoglycan (GAG) chains of the stromal proteoglycans. Evidence of lamellar interweaving that varies with depth through the cornea is provided by imaging that uses polarized light.10 The interweaving appears maximal at the anterior surface and significantly reduces toward the posterior. Recent images by Jester et al.11,12 using second harmonic generated imaging confirm this assessment. Figure 1 shows the central part of a full human cornea cross-section created from many second harmonic generated images and in which distinct interweaving in the anterior third may be discerned by the through-thickness trajectory of many of the lamellae. It is also noted that scanning electron microscopy and transmission electron microscopy images show that lamellae become wider and thicker toward the posterior of the stroma.13 X-ray scattering studies have demonstrated that the collagen associated with preferred directions measured in the limbal plane also varies with depth through the cornea.14 After using a femtosecond laser to cut the stroma into thirds through the thickness, Abahussin et al.14 showed that lamellae exhibit preferred angular distributions in the posterior third but transition toward a more uniform distribution in the anterior third. Figure 1. Cross-section of a human cornea from second harmonic generated imaging showing the interweaving of lamellae in the anterior third. The complex patterns of the three-dimensional collagen architecture within the stroma can be expected to affect and contribute to the elasticity of the tissue regionally. In particular, the variation of microstructure through the thickness suggests that the mechanical properties of the stroma may have a nonconstant profile through the thickness. Depth dependence of mechanical properties in the stroma, including transverse shear stiffness, has not been considered heretofore and may be important for the biomechanics of the cornea. We hypothesize that the pronounced interweaving of lamellae in the anterior third compared with the central and posterior thirds will provide the anterior third with a relatively larger transverse shear modulus because the collagen in vertically descending lamellae may be engaged during the shearing deformations. This will not be the case in noninterweaving regions. In this work we report direct measurement of the transverse shear modulus of the human corneal stroma through the depth using torsional rheometry.

Journal ArticleDOI
TL;DR: This study characterizes AV leaflet aortic surface fluid shear stresses using Laser Doppler velocimetry and an in vitro pulsatile flow loop and represents the most well-resolved shear stress measurements to date across a range of conditions on the aorta side of the AV.
Abstract: Aortic valve (AV) calcification is a highly prevalent disease with serious impact on mortality and morbidity. Although exact causes and mechanisms of AV calcification are unclear, previous studies suggest that mechanical forces play a role. Since calcium deposits occur almost exclusively on the aortic surfaces of AV leaflets, it has been hypothesized that adverse patterns of fluid shear stress on the aortic surface of AV leaflets promote calcification. The current study characterizes AV leaflet aortic surface fluid shear stresses using Laser Doppler velocimetry and an in vitro pulsatile flow loop. The valve model used was a native porcine valve mounted on a suturing ring and preserved using 0.15% glutaraldehyde solution. This valve model was inserted in a mounting chamber with sinus geometries, which is made of clear acrylic to provide optical access for measurements. To understand the effects of hemodynamics on fluid shear stress, shear stress was measured across a range of conditions: varying stroke volumes at the same heart rate and varying heart rates at the same stroke volume. Systolic shear stress magnitude was found to be much higher than diastolic shear stress magnitude due to the stronger flow in the sinuses during systole, reaching up to 20 dyn/cm2 at mid-systole. Upon increasing stroke volume, fluid shear stresses increased due to stronger sinus fluid motion. Upon increasing heart rate, fluid shear stresses decreased due to reduced systolic duration that restricted the formation of strong sinus flow. Significant changes in the shear stress waveform were observed at 90 beats/min, most likely due to altered leaflet dynamics at this higher heart rate. Overall, this study represents the most well-resolved shear stress measurements to date across a range of conditions on the aortic side of the AV. The data presented can be used for further investigation to understand AV biological response to shear stresses.

Journal ArticleDOI
TL;DR: In this article, a novel specimen geometry is presented that can be used for the characterisation of the shear behavior of sheet metals over a wide range of strain rates using traditional tensile test devices.
Abstract: Few shear test techniques exist that cover the range of strain rates from static to dynamic. In this work, a novel specimen geometry is presented that can be used for the characterisation of the shear behaviour of sheet metals over a wide range of strain rates using traditional tensile test devices. The main objectives during the development of the shear specimen have been 1) obtaining a homogeneous stress state with low stress triaxiality in the zone of the specimen subjected to shear and 2) appropriateness for dynamic testing. Additionally, avoiding premature specimen failure due to edge effects was aimed at. Most dimensional and practical constraints arose from the dynamic test in which the specimen is loaded by mechanical waves in a split Hopkinson tensile bar device. Design of the specimen geometry is based on finite element simulations using ABAQUS/Explicit. The behaviour of the specimen is compared with the more commonly used simple shear specimen with clamped grips. Advantages of the new technique are shown. The technique is applied to Ti6Al4V sheet. During the high strain rate experiments high speed photography and digital image correlation are used to obtain the local shear strain in the specimen. Comparison of experimental and numerical results shows good correspondence.

Journal ArticleDOI
TL;DR: To investigate the accuracy of wall shear stress estimation using MRI, the impact of different parameters and if MRI WSS estimates are monotonically related to actual WSS are investigated.
Abstract: The study of blood flow is essential in understanding the physiology and pathophysiology of the cardiovascular system. Small disturbances of the blood flow may over time evolve and contribute to cardiovascular pathology. While the blood flow in a healthy human appears to be predominately laminar, turbulent or transitional blood flow is thought to be involved in the pathogenesis of several cardiovascular diseases. Wall shear stress is the frictional force of blood on the vessel wall and has been linked to the pathogenesis of atherosclerosis and aneurysms. Despite the importance of hemodynamic factors, cardiovascular diagnostics largely relies on the indirect estimation of function based on morphological data.Time-resolved three-dimensional (3D) phase-contrast magnetic resonance imaging (MRI), often referred to as 4D flow MRI, is a versatile and non-invasive tool for cardiovascular blood flow assessment. The use of 4D flow MRI permits estimation of flow volumes, pressure losses, wall shear stress, turbulence intensity and many other unique hemodynamic parameters. However, 4D flow MRI suffers from long scan times, sometimes over 40 minutes. Furthermore, the accuracy of the many different 4D flow MRI-based applications and estimates have not been thoroughly examined.In this thesis, the accuracy of 4D flow MRI-based turbulence intensity mapping and wall shear stress estimation was investigated by using numerical simulations of MRI flow measurements. While the results from the turbulence intensity mapping agreed well with reference values from computational fluid dynamics data, the accuracy of the MRI-based wall shear stress estimates was found to be very sensitive to different parameters, especially to spatial resolution, and wall shear stress values over 5 N/m2 were not well resolved.To reduce the scan time, a 4D flow MRI sequence using spiral k-space trajectories was implemented and validated in-vivo and in-vitro. The scan time of 4D flow MRI was reduced by more than two-fold compared to a conventional Cartesian acquisition already accelerated using SENSE factor 2, and the data quality was maintained. For a 4D flow scan of the human heart, the use of spiral k-space trajectories resulted in a scan time of around 13 min, compared to 30 min for the Cartesian acquisition. By combining parallel imaging and spiral trajectories, the total scan time of a 4D flow measurement of the entire heart may be further reduced. This scan time reduction may also be traded for higher spatial resolution.Numerical simulation of 4D flow MRI may act as an important tool for future optimization and validation of the spiral 4D flow sequence. The scan-time reductions offered by the spiral k-space trajectories can help to cut costs, save time, reduce discomfort for the patient as well as to decrease the risk for motion artifacts. These benefits may facilitate an expanded clinical and investigative use of 4D flow MRI, including larger patient research studies.

Journal ArticleDOI
TL;DR: In this article, an analysis for magnetohydrodynamic (MHD) flow of an incompressible generalized Oldroyd-B fluid inducing by an accelerating plate is presented, where the no-slip assumption between the wall and the fluid is no longer valid.
Abstract: This paper presents an analysis for magnetohydrodynamic (MHD) flow of an incompressible generalized Oldroyd-B fluid inducing by an accelerating plate. Where the no-slip assumption between the wall and the fluid is no longer valid. The fractional calculus approach is introduced to establish the constitutive relationship of a viscoelastic fluid. Closed form solutions for velocity and shear stress are obtained in terms of Fox H-function by using the discrete Laplace transform of the sequential fractional derivatives. The solutions for no-slip condition and no magnetic field can be derived as the special cases. Furthermore, the effects of various parameters on the corresponding flow and shear stress characteristics are analyzed and discussed in detail.

Journal ArticleDOI
TL;DR: In this paper, the authors studied the rheology of cornstarch suspensions, a non-Brownian particle system that exhibits discontinuous shear thickening, and found that the shear region of a nonflowing region seems to prevent or delay shear thinning.
Abstract: We study the rheology of cornstarch suspensions, a non-Brownian particle system that exhibits discontinuous shear thickening. Using magnetic resonance imaging (MRI), the local properties of the flow are obtained by the determination of local velocity profiles and concentrations in a Couette cell. For low rotational rates, we observe shear localization characteristic of yield stress fluids. When the overall shear rate is increased, the width of the sheared region increases. The discontinuous shear thickening is found to set in at the end of this shear localization regime when all of the fluid is sheared: the existence of a nonflowing region, thus, seems to prevent or delay shear thickening. Macroscopic observations using different measurement geometries show that the smaller the gap of the shear cell, the lower the shear rate at which shear thickening sets in. We, thus, propose that the discontinuous shear thickening of cornstarch suspensions is a consequence of dilatancy: the system under flow attempts to...

Journal ArticleDOI
TL;DR: In this article, a rotational rheometer and a transparent cylindrical measuring system were used to characterize the suspension rheology of microfibrillated cellulose in relation to flocculation of the cellulose fibrils.
Abstract: Our aim was to characterise the suspension rheology of microfibrillated cellulose (MFC) in relation to flocculation of the cellulose fibrils. Measurements were carried out using a rotational rheometer and a transparent cylindrical measuring system that allows combining visual information to rheological parameters. The photographs were analyzed for their floc size distribution. Conclusions were drawn by comparing the photographs and data obtained from measurements. Variables selected for examination of MFC suspensions were degree of disintegration of fibres into microfibrils, the gap between the cylinders, sodium chloride concentration, and the effects of changing shear rate during the measurement. We studied changes in floc size under different conditions and during network structure decomposition. At rest, the suspension consisted of flocs sintered together into a network. With shearing, the network separated first into chain-like floc formations and, upon further shear rate increase, into individual spherical flocs. The size of these spherical flocs was inversely proportional to the shear rate. Investigations also confirmed that floc size depends on the geometry gap, and it affects the measured shear stress. Furthermore, suspension photographs revealed an increasing tendency to aggregation and wall depletion with sodium chloride concentration of 10−3 M and higher.

Journal ArticleDOI
TL;DR: In this article, the authors proposed a theory that the bond-slip law for a FRP-concrete interface contains linear hardening and exponential softening, and analyzed the debonding process of the whole interface for different bond lengths.

Journal ArticleDOI
TL;DR: The Newtonian fluid assumption can underestimate viscosity and overestimate shear rate and WSS in regions of stasis or slowly recirculating secondary vortices, typically found at the dome in elongated or complex-shaped saccular aneurysms as well as in aneurYSms following endovascular treatment.
Abstract: Objective Computational fluid dynamics (CFD) simulations of intracranial aneurysm hemodynamics usually adopt the simplification of the Newtonian blood rheology model. A study was undertaken to examine whether such a model affects the predicted hemodynamics in realistic intracranial aneurysm geometries. Methods Pulsatile CFD simulations were carried out using the Newtonian viscosity model and two non-Newtonian models (Casson and Herschel-Bulkley) in three typical internal carotid artery saccular aneurysms (A, sidewall, oblong-shaped with a daughter sac; B, sidewall, quasi-spherical; C, near-spherical bifurcation). For each aneurysm model the surface distributions of shear rate, blood viscosity and wall shear stress (WSS) predicted by the three rheology models were compared. Results All three rheology models produced similar intra-aneurysmal flow patterns: aneurysm A had a slowly recirculating secondary vortex near the dome whereas aneurysms B and C contained only a large single vortex. All models predicted similar shear rate, blood viscosity and WSS in parent vessels of all aneurysms and in the sacs of B and C. However, large discrepancies in shear rate, viscosity and WSS among predictions by the various rheology models were found in the dome area of A where the flow was relatively stagnant. Here the Newtonian model predicted higher shear rate and WSS values and lower blood viscosity than the two non-Newtonian models. Conclusions The Newtonian fluid assumption can underestimate viscosity and overestimate shear rate and WSS in regions of stasis or slowly recirculating secondary vortices, typically found at the dome in elongated or complex-shaped saccular aneurysms as well as in aneurysms following endovascular treatment. Because low shear rates and low WSS in such flow conditions indicate a high propensity for thrombus formation and rupture, CFD based on the Newtonian assumption may underestimate the propensity of these events.

Journal ArticleDOI
TL;DR: In this article, a 3.0 m long and 0.5 m wide flume using four well sorted sands was simulated inside the flume at four slopes (5.2, 8.7, 13.2 and 17.6%) to analyze their impact on sediment transport rate.
Abstract: . Sediment transport is an important component of the soil erosion process, which depends on several hydraulic parameters like unit discharge, mean flow velocity, and slope gradient. In most of the previous studies, the impact of these hydraulic parameters on transport capacity was studied for non-erodible bed conditions. Hence, this study aimed to examine the influence of unit discharge, mean flow velocity and slope gradient on sediment transport capacity for erodible beds and also to investigate the relationship between transport capacity and composite force predictors, i.e. shear stress, stream power, unit stream power and effective stream power. In order to accomplish the objectives, experiments were carried out in a 3.0 m long and 0.5 m wide flume using four well sorted sands (0.230, 0.536, 0.719, 1.022 mm). Unit discharges ranging from 0.07 to 2.07 × 10−3 m2 s−1 were simulated inside the flume at four slopes (5.2, 8.7, 13.2 and 17.6%) to analyze their impact on sediment transport rate. The sediment transport rate measured at the bottom end of the flume by taking water and sediment samples was considered equal to sediment transport capacity, because the selected flume length of 3.0 m was found sufficient to reach the transport capacity. The experimental result reveals that the slope gradient has a stronger impact on transport capacity than unit discharge and mean flow velocity due to the fact that the tangential component of gravity force increases with slope gradient. Our results show that unit stream power is an optimal composite force predictor for estimating transport capacity. Stream power and effective stream power can also be successfully related to the transport capacity, however the relations are strongly dependent on grain size. Shear stress showed poor performance, because part of shear stress is dissipated by bed irregularities, bed form evolution and sediment detachment. An empirical transport capacity equation was derived, which illustrates that transport capacity can be predicted from median grain size, total discharge and slope gradient.

Journal ArticleDOI
TL;DR: In this article, the influence of the solid earth and ocean tides on a catalog of ∼550,000 low frequency earthquakes (LFEs) distributed along a 150 km section of the San Andreas Fault centered at Parkfield is analyzed.
Abstract: [1] Studies of nonvolcanic tremor (NVT) have established the significant impact of small stress perturbations on NVT generation Here we analyze the influence of the solid earth and ocean tides on a catalog of ∼550,000 low frequency earthquakes (LFEs) distributed along a 150 km section of the San Andreas Fault centered at Parkfield LFE families are identified in the NVT data on the basis of waveform similarity and are thought to represent small, effectively co-located earthquakes occurring on brittle asperities on an otherwise aseismic fault at depths of 16 to 30 km We calculate the sensitivity of each of these 88 LFE families to the tidally induced right-lateral shear stress (RLSS), fault-normal stress (FNS), and their time derivatives and use the hypocentral locations of each family to map the spatial variability of this sensitivity LFE occurrence is most strongly modulated by fluctuations in shear stress, with the majority of families demonstrating a correlation with RLSS at the 99% confidence level or above Producing the observed LFE rate modulation in response to shear stress perturbations requires low effective stress in the LFE source region There are substantial lateral and vertical variations in tidal shear stress sensitivity, which we interpret to reflect spatial variation in source region properties, such as friction and pore fluid pressure Additionally, we find that highly episodic, shallow LFE families are generally less correlated with tidal stresses than their deeper, continuously active counterparts The majority of families have weaker or insignificant correlation with positive (tensile) FNS Two groups of families demonstrate a stronger correlation with fault-normal tension to the north and with compression to the south of Parkfield The families that correlate with fault-normal clamping coincide with a releasing right bend in the surface fault trace and the LFE locations, suggesting that the San Andreas remains localized and contiguous down to near the base of the crust The deep families that have high sensitivity to both shear and tensile normal stress perturbations may be indicative of an increase in effective fault contact area with depth Synthesizing our observations with those of other LFE-hosting localities will help to develop a comprehensive understanding of transient fault slip below the “seismogenic zone” by providing constraints on parameters in physical models of slow slip and LFEs

Journal ArticleDOI
TL;DR: In this article, the evolution of elastic-plastic shock waves with the propagation distance has been studied in 99.99% purity aluminum and in annealed 6061 aluminum alloy.
Abstract: The evolution of elastic-plastic shock waves with the propagation distance has been studied in 99.99% purity aluminum and in annealed 6061 aluminum alloy. The free surface velocity histories of shock-loaded samples, 0.1–2.0 mm thick and with initial temperature from 296 to 932 K, have been recorded using velocity interferometer system for any reflector (VISAR). The measured amplitudes of the elastic precursor waves have been approximated by power functions of the propagation distance, and these data have been converted into relationships between the shear stress at the top of elastic precursor wave and the initial plastic strain rate. The latter was found to decrease from 106 to 104 s−1 over 0.1 to 2-mm precursor traverse, while the density of mobile dislocations corresponding to these strain rates varied from 2 × 108 to 5 × 106 cm−2. At fixed strain rates, the flow stress of aluminum grows linearly with temperature. An analysis of the rise times of the plastic shock waves has shown that, for the same level of shear stress, the plastic strain rate at the shock front is by an order of magnitude higher and the density of mobile dislocations is 2-3 times higher than their initial values behind the elastic precursor front.