Topic

# Shear velocity

About: Shear velocity is a research topic. Over the lifetime, 7391 publications have been published within this topic receiving 242263 citations.

##### Papers published on a yearly basis

##### Papers

More filters

••

TL;DR: In this article, it was shown that a sphere moving through a very viscous liquid with velocity V relative to a uniform simple shear, the translation velocity being parallel to the streamlines and measured relative to streamline through the centre, experiences a lift force 81·2μVa2k½/v½ + smaller terms perpendicular to the flow direction, which acts to deflect the particle towards the streamline moving in the direction opposite to V.

Abstract: It is shown that a sphere moving through a very viscous liquid with velocity V relative to a uniform simple shear, the translation velocity being parallel to the streamlines and measured relative to the streamline through the centre, experiences a lift force 81·2μVa2k½/v½ + smaller terms perpendicular to the flow direction, which acts to deflect the particle towards the streamlines moving in the direction opposite to V. Here, a denotes the radius of the sphere, κ the magnitude of the velocity gradient, and μ and v the viscosity and kinematic viscosity, respectively. The relevance of the result to the observations by Segree & Silberberg (1962) of small spheres in Poiseuille flow is discussed briefly. Comments are also made about the problem of a sphere in a parabolic velocity profile and the functional dependence of the lift upon the parameters is obtained.

2,912 citations

••

TL;DR: In this paper, an approximate solution to the boundary value problem is developed for a logarithmic profile and the corresponding spectral distribution of the energy transfer coefficient calculated as a function of wave speed.

Abstract: A mechanism for the generation of surface waves by a parallel shear flow U(y) is developed on the basis of the inviscid Orr-Sommerfeld equation. It is found that the rate at which energy is transferred to a wave of speed c is proportional to the profile curvature -U"(y) at that elevation where U = c. The result is applied to the generation of deep-water gravity waves by wind. An approximate solution to the boundary value problem is developed for a logarithmic profile and the corresponding spectral distribution of the energy transfer coefficient calculated as a function of wave speed. The minimum wind speed for the initiation of gravity waves against laminar dissipation in water having negligible mean motion is found to be roughly 100cm/sec. A spectral mean value of the sheltering coefficient, as defined by Munk, is found to be in order-of-magnitude agreement with total wave drag measurements of Van Dorn. It is concluded that the model yields results in qualitative agreement with observation, but truly quantitative comparisons would require a more accurate solution of the boundary value problem and more precise data on wind profiles than are presently available. The results also may have application to the flutter of membranes and panels.

1,399 citations

••

ARCO

^{1}TL;DR: In this article, the authors analyzed new velocity data in addition to literature data derived from sonic log, seismic, and laboratory measurements for clastic silicate rocks and demonstrated simple systematic relationships between compressional and shear wave velocities.

Abstract: New velocity data in addition to literature data derived from sonic log, seismic, and laboratory measurements are analyzed for clastic silicate rocks. These data demonstrate simple systematic relationships between compressional and shear wave velocities. For water-saturated clastic silicate rocks, shear wave veloci ty is approximately linearly related to compressional wave velocity and the compressional-to-shear velocity ratio decreases with increasing compressional velocity. Laboratory data for dry sandstones indicate a nearly constant compressional-to-shear velocity ratio with rigidity approximately equal to bulk modulus. Ideal models for regular packings of spheres and cracked solids exhibit behavior similar to the observed water saturated and dry trends. For dry rigidity equal to dry bulk modulus, Gassmann's equations predict velocities in close agreement with data from the water-saturated

1,379 citations

••

TL;DR: In this article, a soil-derived dust emission scheme was designed to provide an explicit representation of the desert dust sources for the atmospheric transport models dealing with the simulation of the dust cycle.

Abstract: A soil-derived dust emission scheme has been designed to provide an explicit representation of the desert dust sources for the atmospheric transport models dealing with the simulation of the desert dust cycle. Two major factors characterizing the erodible surface are considered: (1) the size distribution of the erodible loose particles of the soil which controls the erosion threshold and the emission strength and (2) the surface roughness which imposes the efficient wind friction velocity acting on the erodible surface. These two parameters are included in a formulation of the threshold wind friction velocity by adapting a size-dependent parameterization proposed by Iversen and White (1982) and by applying to the rough erodible surfaces a drag partition scheme derived from Arya (1975). This parameterization of the threshold friction velocity has been included in an horizontal flux equation proposed by White (1979). This allows to attribute a specific production rate to each soil size range for each type of surface. The dust flux F is then considered as a fraction of the total horizontal flux G, the value of the ratio F/G being imposed, at this time, by the soil clay content. In summary, the computed mass fluxes depend on the soil size distribution, the roughness lengths, and the wind friction velocity. The different steps of this scheme have been independently validated by comparison with relevant experimental data. Globally, the agreement is satisfying, so that the dust fluxes could be retrieved with less uncertainties than those observed in previous simulations of the desert dust cycle.

1,244 citations

••

TL;DR: In this article, the authors provide tables for estimating random horizontal component peak acceleration and 5 percent damped pseudo-acceleration response spectra in terms of the natural, rather than common, logarithm of the ground-motion parameter.

Abstract: In this paper we summarize our recently-published work on estimating horizontal response spectra and peak acceleration for shallow earthquakes in western North America. Although none of the sets of coefficients given here for the equations are new, for the convenience of the reader and in keeping with the style of this special issue, we provide tables for estimating random horizontal-component peak acceleration and 5 percent damped pseudo-acceleration response spectra in terms of the natural, rather than common, logarithm of the ground-motion parameter. The equations give ground motion in terms of moment magnitude, distance, and site conditions for strike-slip, reverse-slip, or unspecified faulting mechanisms. Site conditions are represented by the shear velocity averaged over the upper 30 m, and recommended values of average shear velocity are given for typical rock and soil sites and for site categories used in the National Earthquake Hazards Reduction Program's recommended seismic code provisions. In addition, we stipulate more restrictive ranges of magnitude and distance for the use of our equations than in our previous publications. Finally, we provide tables of input parameters that include a few corrections to site classifications and earthquake magnitude (the corrections made a small enough difference in the ground-motion predictions that we chose not to change the coefficients of the prediction equations).

1,129 citations