scispace - formally typeset
Search or ask a question
Topic

Shell balance

About: Shell balance is a research topic. Over the lifetime, 154 publications have been published within this topic receiving 3691 citations.


Papers
More filters
Journal ArticleDOI
T.C. Su1
TL;DR: In this paper, the axisymmetric free oscillations of a fluid-filled spherical shell are studied and the dynamic response of the shell is determined by the classical normal mode method, while a boundary layer approximation is employed for the compressible viscous fluid medium.

37 citations

Journal ArticleDOI
TL;DR: In this paper, the free vibration of anisotropic laminated composite, as well as isotropic open or closed, cylindrical shells submerged in and subjected simultaneously to an internal and external incompressible, inviscid fluid are discussed on the basis of a refined shell theory in which transverse shear deformation and rotary inertia effects are taken into account.

36 citations

Journal ArticleDOI
TL;DR: In this paper, a coupled fluid structure interaction problem is analyzed using semi-analytical finite element method involving composite cylindrical shells conveying hot fluid for free vibration and buckling behavior.

34 citations

Journal ArticleDOI
TL;DR: In this article, the authors consider the stability of small perturbations to a uniform inviscid compressible flow within a cylindrical linear-elastic thin shell, and derive asymptotic expressions for the shell thickness separating stable and unstable behaviour.
Abstract: We consider the stability of small perturbations to a uniform inviscid compressible flow within a cylindrical linear-elastic thin shell. The thin shell is modelled using Flugge's equations, and is forced from the inside by the fluid, and from the outside by damping and spring forces. In addition to acoustic waves within the fluid, the system supports surface waves, which are strongly coupled to the thin shell. Stability is analysed using the Briggs–Bers criterion, and the system is found to be either stable or absolutely unstable, with absolute instability occurring for sufficiently small shell thicknesses. This is significantly different from the stability of a thin shell containing incompressible fluid, even for parameters for which the fluid would otherwise be expected to behave incompressibly (for example, water within a steel thin shell). Asymptotic expressions are derived for the shell thickness separating stable and unstable behaviour.We then consider the scattering of waves by a sudden change in the duct boundary from rigid to thin shell, using the Wiener–Hopf technique. For the scattering of an inbound acoustic wave in the rigid-wall section, the surface waves are found to play an important role close to the sudden boundary change. The solution is given analytically as a sum of duct modes.The results in this paper add to the understanding of the stability of surface waves in models of acoustic linings in aeroengine ducts. The oft-used mass–spring–damper model is regularized by the shell bending terms, and even when these terms are very small, the stability and scattering results are quite different from what has been claimed for the mass–spring–damper model. The scattering results derived here are exact, unique and causal, without the need to apply a Kutta-like condition or to include an instability wave. A movie is available with the online version of the paper.

33 citations

Network Information
Related Topics (5)
Fluid dynamics
47.9K papers, 1M citations
68% related
Laminar flow
56K papers, 1.2M citations
67% related
Reynolds number
68.4K papers, 1.6M citations
66% related
Vibration
80K papers, 849.3K citations
65% related
Numerical analysis
52.2K papers, 1.2M citations
64% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20181
20173
20168
20155
20144
20136