scispace - formally typeset
Search or ask a question
Topic

Shielded metal arc welding

About: Shielded metal arc welding is a research topic. Over the lifetime, 4462 publications have been published within this topic receiving 40560 citations. The topic is also known as: manual metal arc welding & flux shielded arc welding.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an experimental Al-Cu-Li-Mg-Ag-Zr type alloy in the form of 13.7 mm thick plates was studied for its fusion characteristics using gas metal arc welding (GMAW) and pulsed gas metal arcs welding (P-GMAw).
Abstract: An experimental Al–Cu–Li–Mg–Ag–Zr type alloy in the form of 13.7 mm thick plates was studied for its fusion characteristics using gas metal arc welding (GMAW) and pulsed gas metal arc welding (P-GMAW). High copper 2319 filler of 1.6 mm diameter was used. The burn-off characteristics of 2319 filler wire in GMAW and P-GMAW were experimentally determined, including the relation between pulse current and pulse duration for the desired one-drop detachment per pulse (ODPP) condition and feasible range of pulse parameters. The effect of welding parameters on bead geometry and shape relationships was investigated through beadon-plate experiments in the welding current range above the spray transition current. Reasonably good weld beads were obtained in P-GMAW at currents as low as 194 A and welding speeds of 45 cm min–1. P-GMAW yielded significantly higher weld penetration compared to GMAW.

17 citations

Patent
16 Aug 1989
TL;DR: A spray mode gas metal arc welding process employing a shielding gas mixture consisting essentially of (A) 3 to 8 volume percent carbon dioxide, (B) 30 to 40 volume percent argon and (C) the balance helium is described in this paper.
Abstract: A spray mode gas metal arc welding process employing a shielding gas mixture consisting essentially of (A) 3 to 8 volume percent carbon dioxide, (B) 30 to 40 volume percent argon and (C) the balance helium

17 citations

Patent
04 Jan 1973
TL;DR: In this article, a self-shielded welding electrode for vertical-up welding using molding shoes to hold the molten metal in position, using an open arc which does not require an externally-supplied shielding gas and which permits very high linear welding speeds.
Abstract: A cored-type welding electrode for vertical-up welding using molding shoes to hold the molten metal in position, using an open arc which does not require an externally-supplied shielding gas and which permits very high linear welding speeds. The core materials include a metal fluosilicate capable of breaking down in the heat of the arc to produce: a gas in sufficient volume to shield the arc from the atmosphere and a slag forming ingredient; and, other slag forming ingredients including the metal oxides and the alkali metal fluorides in a critical volume such that the total slag forming ingredients do not exceed six percent of the total electrode weight and the oxides are present in quantities at least greater than the fluorides. The self-shielded electrode further permits the use of active deoxidizers in quantities of under 0.5 percent.

17 citations

Patent
15 Jul 2016
Abstract: Present embodiments include systems and methods for stick welding applications. In certain embodiments, simulation stick welding electrode holders may include stick electrode retraction assemblies configured to mechanically retract a simulation stick electrode toward the stick electrode retraction assembly to simulate consumption of the simulation stick electrode during a simulated stick welding process. In addition, in certain embodiments, stick welding electrode holders may include various input and output elements that enable, for example, control inputs to be input via the stick welding electrode holders, and operational statuses to be output via the stick welding electrode holders. Furthermore, in certain embodiments, a welding training system interface may be used to facilitate communication and cooperation of various stick welding electrode holders with a welding training system.

17 citations

Journal ArticleDOI
TL;DR: In this article, the feasibility of using flux modification in the form of the addition of oxidizing ingredients to reduce the as-deposited hydrogen content of basic-type shielded metal arc welds was examined.
Abstract: This investigation examined the feasibility of using flux modification in the form of the addition of oxidizing ingredients to reduce the as-deposited hydrogen content of basic-type shielded metal arc welds. Additions of up to 16.3% micaceous iron oxide (MIO) to the flux formulation of an E7018-1 type electrode lowered the diffusible weld hydrogen content by approximately 70%. This can be attributed to the formation of oxygen, which lowers the partial pressure of hydrogen in the arc atmosphere, and the reaction of FeO (formed on dissociation of MIO) with hydrogen. The partitioning of deoxidizing elements (manganese and silicon) between the weld metal and slag on addition of MIO to the flux coating was also examined, but the influence of flux additions on the weld mechanical properties and the electrode operating characteristics was not evaluated during the course of this investigation.

17 citations


Network Information
Related Topics (5)
Welding
206.5K papers, 1.1M citations
90% related
Alloy
171.8K papers, 1.7M citations
77% related
Microstructure
148.6K papers, 2.2M citations
76% related
Deformation (engineering)
41.5K papers, 899.7K citations
75% related
Machining
121.3K papers, 1M citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202368
2022108
202192
2020109
201979
2018111