scispace - formally typeset
Search or ask a question
Topic

Shielded metal arc welding

About: Shielded metal arc welding is a research topic. Over the lifetime, 4462 publications have been published within this topic receiving 40560 citations. The topic is also known as: manual metal arc welding & flux shielded arc welding.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the behavior of an AISI 904L SASS weld overlay deposited on a carbon steel ASTM A516 Grade 70 by electro-slag welding (ESW) and gas metal arc welding (GMAW) processes was evaluated and compared.
Abstract: The use of superaustenitic stainless steels (SASS) as an overlay replacement for nickel-based alloys can be an interesting alternative for the oil and gas industries, due to its lower cost, when compared to superalloys. Usually, the deposition is made with several welding passes by using conventional arc welding processes, such as gas tungsten arc welding (GTAW) or gas metal arc welding (GMAW) processes. In this respect, electro-slag welding (ESW), which promotes high heat inputs and low dilution of the welds, can also be attractive for this application, as it provides a higher productivity, once only one layer is needed for the deposition of the minimum thickness required. The present work evaluates the behavior of an AISI 904L SASS weld overlay deposited on a carbon steel ASTM A516 Grade 70 by ESW and GMAW processes. Both as-welded and heat-treated conditions were evaluated and compared. A multipass welding by GMAW process with three layers and 48 passes was performed on 12.5 × 200 × 250 mm steel plates with average welding energy of 1.0 kJ/mm. For ESW process, only one layer was deposited on 50 × 400 × 400 mm steel plates with average welding energy of 11.7 kJ/mm. After welding, a post-weld heat treatment (PWHT) at 620 °C for 10 h was performed in half of the steel plate, in order to allow the comparison between this condition and the as-welded one. For both processes, the austenitic microstructure of the weld deposits was characterized by optical microscopy and scanning electron microscopy with electron backscatter diffraction. A low proportion of secondary phases were observed in all conditions, and the PWHT did not promote significant changes on the hardness profile. Martensite for GMAW process and bainite for ESW process were the microstructural constituents observed at the coarse grain heat-affected zone, due to the different cooling rates. For ESW process, no evidences of partially diluted zones were found. As a consequence of the microstructural findings, the hardness results for ESW were lower than those usually observed for other electric arc welding processes. In addition, specimens subject to bending tests performed in accordance with the current standards used for qualification of welding procedures were approved. These evidences allow the conclusion that the ESW process can provide deposits with high quality despite the high welding energy levels, in order to achieve the desired productivity, being an interesting alternative for AISI 904L weld overlays.

14 citations

Journal ArticleDOI
TL;DR: This study aims at studying the effects of shielded metal arc welding parameters on the evolution of mechanical properties, including tensile strength, impact toughness, and hardness, along with angular distortion on a welded joint from SA 516 grade 70.
Abstract: Welding distortion is a critical issue as it leads to severe deterioration of structural integrity of welded work piece and dimensional precision. This study aims at studying the effects of shielded metal arc welding (SMAW) parameters on the evolution of mechanical properties, including tensile strength, impact toughness, and hardness, along with angular distortion on a welded joint from SA 516 grade 70. Such parameters are analyzed and optimized by employing the Taguchi method and Grey relational analysis. SA 516 grade 70 is commercially used for fabrication of storage tanks, boilers and pressure vessels. SMAW is investigated with three levels of root gap, groove angle, electrode diameter, and pre-heat temperature, which were varied on a butt joint in flat (1 G) position to determine their effects on response variables at room temperature. Nine experiments were designed using a Taguchi L9 orthogonal array, welded according to American Society of Mechanical Engineers (ASME) section IX, and samples were prepared and tested as per ASTM A 370. The Taguchi method and Grey relational analysis were employed to observe the most significant parameters and optimal levels that synergically yield improved responses. Results are validated by conducting confirmatory experiments that show good agreement with optimum results.

14 citations

Journal ArticleDOI
TL;DR: In this article, a mathematical model has been developed to predict corrosion rate of gas tungsten arc welded titanium alloy by incorporating pulsed current parameters such as peak current, back ground current, pulse frequency and pulse-on-time.
Abstract: The preferred process for welding titanium alloy is frequently gas tungsten arc (GTA) welding due to its comparatively easier applicability and better economy. Weld fusion zones of this alloy typically exhibit coarse columnar grains and lead to inferior mechanical and metallurgical properties. In the case of single pass GTA welding of a thinner section of this alloy, the pulsed current has been found to be beneficial primarily due to grain refinement of the weld fusion zone over the conventional continuous current process. Fusion zone grain refinement is controlled by pulsed current parameters such as peak current, back ground current, pulse frequency and pulse-on-time. In this investigation, a mathematical model has been developed to predict corrosion rate of gas tungsten arc welded titanium alloy by incorporating pulsed current parameters. Four factors, five level, central composite, rotatable design matrix has been used to minimize the experimental conditions. A mathematical model has been developed by response surface method (RSM). The developed model has been optimized using genetic algorithm (GA) and contour plots to attain minimum corrosion rate in the weld fusion zone.

14 citations

Patent
16 May 1957

14 citations

Journal ArticleDOI
TL;DR: In this article, a comparison between the arc pressures generated using argon, helium, alternating shielding gases and pulsed gas tungsten arc welding (GTAW) has been conducted.
Abstract: As part of an ongoing process to fully evaluate the effects of an alternating shielding gas supply on gas shielded welding processes, a comparison between the arc pressures generated using argon, helium, alternating shielding gases and pulsed gas tungsten arc welding (GTAW) has been conducted. Arc pressure variation and peaking are two of the fundamental phenomena produced during the alternating shielding gas process and are said to help create a stirring action within the liquid weld metal. However, there are no published data on arc pressure measurements during an alternating shielding gas supply, and consequently, these phenomena are based solely on theoretical assumptions. The experimental measurements made have shown that alternating shielding gases produce considerably higher arc pressures than argon, helium and pulsed GTAW due to a surge at weld initiation. The transient arc pressure measurements made when using alternating shielding gases are also considerably different from the theoretica...

14 citations


Network Information
Related Topics (5)
Welding
206.5K papers, 1.1M citations
90% related
Alloy
171.8K papers, 1.7M citations
77% related
Microstructure
148.6K papers, 2.2M citations
76% related
Deformation (engineering)
41.5K papers, 899.7K citations
75% related
Machining
121.3K papers, 1M citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202368
2022108
202192
2020109
201979
2018111