scispace - formally typeset
Search or ask a question
Topic

Shielded metal arc welding

About: Shielded metal arc welding is a research topic. Over the lifetime, 4462 publications have been published within this topic receiving 40560 citations. The topic is also known as: manual metal arc welding & flux shielded arc welding.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, influence of 14 different oxide-, chloride-, and fluoride-based fluxes were evaluated on DOP and width-to-penetration ratio during flux-activated TIG (ATIG) welding of low alloy steel (AISI 4340), austenitic, AISI 304, and AisI 316) and duplex (Duplex 2205) stainless steels.
Abstract: In tungsten inert gas (TIG) welding, a low depth of penetration (DOP) is achieved during single pass. To achieve the required DOP, the speed of welding should be reduced; thus productivity reduces significantly. In this work, influence of 14 different oxide-, chloride-, and fluoride-based fluxes are evaluated on DOP and width-to-penetration ratio during flux-activated TIG (ATIG) welding of low alloy steel (AISI 4340), austenitic (AISI 304 and AISI 316) and duplex (Duplex 2205) stainless steels. The effect of welding current and three different shielding gas compositions is also studied during ATIG for these workpieces. Arc and weld metal pool behaviors are captured in order to study the physical behavior of the process. Results revealed that oxide-based fluxes like SiO2, MoO3, MoS2, CrO3, and TiO2 increases DOP significantly and in many cases through penetration (penetration reaches beyond plate thickness) is achieved. There is a noteworthy enhancement in penetration because of the addition of H2 in shiel...

47 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used response surface methodology to predict and optimize the percentage of the dilution of a cobalt-based hard-faced surface produced by the PTA process.
Abstract: Control of dilution is important in hardfacing, where low dilution is typically desirable. At present, most fabrication industries use shielded metal are welding, gas metal arc welding, gas tungsten arc welding and submerged are welding processes for hardfacing purposes. In these processes, the percentage of the dilution level is higher, ranging between 10% and 30%. In Plasma Transferred Arc (PTA) hardfacing, a solidified metallurgical bond between the deposit and the substrate is obtained with minimum dilution (less than 10%). This paper highlights the application of response surface methodology to predict and optimize the percentage of the dilution of a cobalt-based hardfaced surface produced by the PTA process. Experiments were conducted based on a fully replicable five-factor, five-level central composite rotatable design and a mathematical model was developed using response surface methodology. Furthermore, the response surface methodology was used to optimize the process parameters that yield the lowest percentage of dilution.

47 citations

Journal ArticleDOI
TL;DR: This study indicates that 2000 CFM general dilution ventilation per 29 CFR 1910.252 (c)(2) may not be a sufficient means of controlling respirable manganese exposures for either welders or their helpers in restricted or enclosed spaces.
Abstract: The work reported here evaluates the effectiveness of various rates of dilution ventilation in controlling welder exposures to manganese in shielded metal arc welding (SMAW) fume when working in enclosed or restricted spaces. Personal and area monitoring using total and respirable sampling techniques, along with multiple analytical techniques, was conducted during the welding operations. With 2000 cubic feet per minute (CFM) (56.63 m 3 /min) dilution ventilation, personal breathing zone concentrations for the welder using 1/8″ (3.18 mm) E6010 and E7018 mild steel electrodes were within 75% of the existing threshold limit value (TLV® of 0.2 mg/m 3 for total manganese and were five times greater than the 2001–2003 proposed respirable manganese TLV of 0.03 mg/m 3 . Manganese concentrations using high manganese content electrodes were five times greater than those for E6010 and E7018 electrodes. Area samples upstream and downstream of the welder using E6010 and E7018 electrodes exceeded 0.2 mg/m3 manganese. C...

47 citations

Journal ArticleDOI
TL;DR: In this paper, the chemical surface structure of three types of welding fumes-manual metal arc and metal inert gas welding fumes of stainless steel and manual metal arc welding emissions of mild steel-were analyzed using X-ray photoelectron spectroscopy.

46 citations

Journal ArticleDOI
TL;DR: The purpose of the present study was to create a "synthetic" work situation under semilaboratory conditions by combining one grinding period and two MMA welding periods and comparing these results with results during welding in a workshop.
Abstract: Elemental composition and morphology of pure manual metal arc (MMA) welding fumes, pure grinding dust, and combined fume/dust air samples were collected and determined separately under semilaboratory conditions. The base material was stainless steel. The purpose of the present study was to create a “synthetic” work situation under semilaboratory conditions by combining one grinding period and two MMA welding periods and comparing these results with results during welding in a workshop. The duty cycles of pure welding and of pure grinding were also observed. A comparison was also made between metal inert gas (MIG) and MMA welding on stainless steel as well as a nickel-rich alloy under regular conditions. The amount of collected material was determined by weighing the membrane filters before and after exposure, and the element contents were determined by atomic spectroscopy. Other transmission electron microscopy (TEM) filters were used for TEM and computer-image analysis, in which the amount of collected m...

46 citations


Network Information
Related Topics (5)
Welding
206.5K papers, 1.1M citations
90% related
Alloy
171.8K papers, 1.7M citations
77% related
Microstructure
148.6K papers, 2.2M citations
76% related
Deformation (engineering)
41.5K papers, 899.7K citations
75% related
Machining
121.3K papers, 1M citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202368
2022108
202192
2020109
201979
2018111