scispace - formally typeset
Search or ask a question
Topic

Shielding gas

About: Shielding gas is a research topic. Over the lifetime, 6697 publications have been published within this topic receiving 58668 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the effect of double-layer shielding and five other process parameters, namely welding voltage, current, primary shielding gas type, its flow rate, and filler material, was studied during dissimilar gas metal arc welding (GMAW) between austenitic and duplex stainless steels (SSs).
Abstract: In the present work, the effect of double-layer shielding and five other process parameters, namely welding voltage, current, primary shielding gas type, its flow rate, and filler material, is studied during dissimilar gas metal arc welding (GMAW) between austenitic and duplex stainless steels (SSs). A simple modification over the GMAW setup is made for additional supply of secondary shielding gas at different flow rates. Two different sets of welding are performed between austenitic and duplex SSs, i.e., AISI 304 with Duplex 2205 and AISI 316 with Duplex 2205, and the contributions of process parameters, their interactions on joint distortion, tensile strength, toughness, and fusion zone microhardness are evaluated. Improvements in joint quality due to the double-shielding environment are also highlighted. Double-layer shielding with secondary shielding by CO2 supply significantly improves tensile strength and toughness and reduces distortion. Fusion and interface zone microstructures are observed by sca...

21 citations

Journal ArticleDOI
TL;DR: In this article, the microstructural metastability of a newly developed Fe-16Cr-1Ni-9Mn-0.12N austenitic stainless steel (ASS), which is uniquely modified from 200 series alloy, was investigated.

21 citations

Patent
22 Jan 1997
TL;DR: In this article, an article made of a gamma titanium aluminide alloy is welded by removing foreign matter from the area to be welded, first stress relieving the article, cooling the entire article to a welding temperature of from about 1000° F. to about 1400° F., welding a preselected region in an inert atmosphere at the welding temperature, and second stress relaxing the article.
Abstract: An article made of a gamma titanium aluminide alloy is welded, as for example in the weld repair of surface cracks, by removing foreign matter from the area to be welded, first stress relieving the article, cooling the entire article to a welding temperature of from about 1000° F. to about 1400° F., welding a preselected region in an inert atmosphere at the welding temperature, and second stress relieving the article. Welding is preferably accomplished by striking an arc in the preselected region so as to locally melt the alloy in the preselected region, providing a filler metal having the same composition as the gamma titanium aluminide alloy of the article, and feeding the filler metal into the arc so that the filler metal is melted and fused with the article to form a weldment upon solidification.

21 citations

Journal ArticleDOI
TL;DR: In this paper, three different approaches for improving the hot cracking susceptibility of AA2198 laser beam welded without any filler material are presented, including pre-heating of the weld samples to elevated temperatures, preloading of weld samples perpendicular to the welding direction, or an optimization of the laser-beam welding parameters.
Abstract: AA2198 is a relatively new light-weight and high-performance Al-Cu-Li alloy considered for aviation and space applications. However, Al-Cu-Li alloys generally exhibit severe weldability problems for all fusion-welding techniques, such as laser-beam welding. In particular, porosity formation and hot cracking are observed for the laser-beam welding of these alloys. A common remedy for hot cracking is the use of an appropriate filler wire with a high Si content. In the present study, three different approaches for improving the hot cracking susceptibility of AA2198 laser beam welded without any filler material are presented. For this purpose, pre-heating of the weld samples to elevated temperatures, pre-loading of the weld samples perpendicular to the welding direction, or an optimization of the laser-beam welding parameters were conducted. The autogenously welded samples were assessed with regard to the resulting total crack length and their mechanical properties. It was demonstrated that all of the presented approaches led to a reduction of hot cracking. However, the largest effect was observed for the use of low levels of laser power and welding velocity. The mechanical properties of the optimised autogenously welded samples are only marginally inferior as for the samples laser welded with the Al-Si filler wire AA4047.

21 citations

Journal ArticleDOI
01 Dec 2016
TL;DR: In this paper, a comparison of the weld geometry, distortion, microstructure and mechanical properties of thin SS 304'L sheets (0.8'mm thickness) welded using micro-plasma arc welding is presented.
Abstract: This research work focuses on comparison of the weld geometry, distortion, microstructure and mechanical properties of thin SS 304 L sheets (0.8 mm thickness) welded using micro-plasma arc welding ...

21 citations


Network Information
Related Topics (5)
Welding
206.5K papers, 1.1M citations
93% related
Microstructure
148.6K papers, 2.2M citations
84% related
Alloy
171.8K papers, 1.7M citations
83% related
Grain boundary
70.1K papers, 1.5M citations
79% related
Ultimate tensile strength
129.2K papers, 2.1M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202357
2022103
2021107
2020168
2019206
2018206