scispace - formally typeset
Search or ask a question
Topic

Shock tube

About: Shock tube is a research topic. Over the lifetime, 6963 publications have been published within this topic receiving 99372 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a numerical method for the simulation of supercritical fluid flow phenomena, valid for a general real gas equation of state, is presented, where three state equations (van der Waals, Carnahan-Starling-De Santis, Redlich-Kwong) describing the thermodynamic behavior of a gas near its critical point are implemented.

59 citations

Journal ArticleDOI
TL;DR: The flexible asymmetric shock tube (FAST) as mentioned in this paper is a Ludwieg tube-type facility designed and built at Delft University of Technology to measure the velocity of waves propagating in dense vapours of organic fluids, in the so-called non-ideal compressible fluid dynamics (NICFD) regime.
Abstract: This paper describes the commissioning of the flexible asymmetric shock tube (FAST), a novel Ludwieg tube-type facility designed and built at Delft University of Technology, together with the results of preliminary experiments. The FAST is conceived to measure the velocity of waves propagating in dense vapours of organic fluids, in the so-called non-ideal compressible fluid dynamics (NICFD) regime, and can operate at pressures and temperatures as high as 21 bar and 400 ?C, respectively. The set-up is equipped with a special fast-opening valve, separating the high-pressure charge tube from the low-pressure plenum. When the valve is opened, a wave propagates into the charge tube. The wave speed is measured using a time-of-flight technique employing four pressure transducers placed at known distances from each other. The first tests led to the following results: (1) the leakage rate of 5×10?4mbarl s?1 for subatmospheric and 5×10?2mbarl s?1 for a superatmospheric pressure is compatible with the purpose of the conceived experiments, (2) the process start-up time of the valve has been found to be between 2.1 and 9.0 ms, (3) preliminary rarefaction wave experiments in the dense vapour of siloxane D6 (dodecamethylcyclohexasiloxane, an organic fluid) were successfully accomplished up to temperatures of 300?C, and (4) a method for the estimation of the speed of sound from wave propagation experiments is proposed. Results are found to be within 2.1 % of accurate model predictions for various gases. The method is then applied to estimate the speed of sound of D6 in the NICFD regime.

59 citations

Journal ArticleDOI
TL;DR: In this paper, two different sizes of bubble radii have been produced, R0=1.15 and 1.6 mm, with a dispersion in size of less than 5%.
Abstract: Transient wave phenomena in two‐phase mixtures with a liquid as the matrix and gas bubbles as the dispersed phase have been studied in a shock tube using glycerine as the liquid and He, N2, and SF6 as gases having a large variation in the ratio of specific heats and the thermal diffusivity. Two different sizes of bubble radii have been produced , R0=1.15 and 1.6 mm, with a dispersion in size of less than 5%. The void fraction was varied over one order of magnitude, φ0=0.2%–2%. The measured pressure profiles were averaged by superimposing many shots, typically 20. Speeds and profiles were measured for shock waves and for wave packets. Investigation of the wave structure allows one to approach the fundamental question of how the physics on the level of the microstructure influences the behavior on the macroscale. In the theoretical work, modeling on the basis of a hierarchy of characteristic length scales is developed. Bubble interactions, transient heat transfer, and dissipation due to molecular and bulk v...

59 citations

Journal ArticleDOI
TL;DR: In this article, a numerical study comparing a fifth-order version of the weighted essentially non-oscillatory numerical (WENO5) method to a modern piecewise-linear, second-order, version of Godunov's (PLMDE) method for the compressible Euler equations is performed.

59 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed chemical kinetic model has been written based on rules similar to those considered for alkanes by the system EXGAS developed at Nancy, with air used as the fuel diluent.

59 citations


Network Information
Related Topics (5)
Combustion
172.3K papers, 1.9M citations
87% related
Laminar flow
56K papers, 1.2M citations
87% related
Reynolds number
68.4K papers, 1.6M citations
86% related
Turbulence
112.1K papers, 2.7M citations
84% related
Boundary layer
64.9K papers, 1.4M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023148
2022285
2021134
2020175
2019173
2018159