scispace - formally typeset
Search or ask a question
Topic

Shock wave

About: Shock wave is a research topic. Over the lifetime, 36184 publications have been published within this topic receiving 635848 citations. The topic is also known as: Shock waves & shockwave.


Papers
More filters
Journal ArticleDOI
TL;DR: A model predictive control approach to optimally coordinate variable speed limits for freeway traffic with the aim of suppressing shock waves is presented and a safety constraint that prevents drivers from encountering speed limit drops larger than, e.g., 10 km/h is included.
Abstract: When freeway traffic is dense, shock waves may appear. These shock waves result in longer travel times and in sudden large variations in the speeds of the vehicles, which could lead to unsafe situations. Dynamic speed limits can be used to eliminate or at least to reduce the effects of shock waves. However, coordination of the variable speed limits is necessary in order to prevent the occurrence of new shock waves and/or a negative impact on the traffic flows in other locations. In this paper, we present a model predictive control approach to optimally coordinate variable speed limits for freeway traffic with the aim of suppressing shock waves. First, we optimize continuous valued speed limits, such that the total travel time is minimal. Next, we include a safety constraint that prevents drivers from encountering speed limit drops larger than, e.g., 10 km/h. Furthermore, to get a better correspondence between the computed and applied control signals, we also consider discrete speed limits. We illustrate our approach with a benchmark problem.

357 citations

Journal ArticleDOI
TL;DR: The results indicate that the WENO methods provide sharp shock profiles, but overwhelm the physical dissipation, and the hybrid method is minimally dissipative and leads to sharp shocks and well-resolved broadband turbulence, but relies on an appropriate shock sensor.

357 citations

Journal ArticleDOI
TL;DR: In this paper, the interaction of a spatially developing adiabatic boundary layer flow at M∞=2.25 and Reθ=3725 with an impinging oblique shock wave (β=33.2°) is analyzed by means of direct numerical simulation of the compressible Navier-Stokes equations.
Abstract: The interaction of a spatially developing adiabatic boundary layer flow at M∞=2.25 and Reθ=3725 with an impinging oblique shock wave (β=33.2°) is analyzed by means of direct numerical simulation of the compressible Navier-Stokes equations. Under the selected flow conditions the incoming boundary layer undergoes mild separation due to the adverse pressure gradient. Coherent structures are shed near the average separation point and the flow field exhibits large-scale low-frequency unsteadiness. The formation of the mixing layer is primarily responsible for the amplification of turbulence, which relaxes to an equilibrium state past the interaction. Complete equilibrium is attained in the inner part of the boundary layer, while in the outer region the relaxation process is incomplete. Far from the interaction zone, turbulence exhibits a universal behavior and it shows similarities with the incompressible case. The interaction of the coherent structures with the incident shock produces acoustic waves that prop...

355 citations

Journal ArticleDOI
TL;DR: The Riemann problem for two-dimensional gas dynamics with isentropic or polytropic gas is considered and the required relations for the initial data and the symmetry properties of the solutions are given.
Abstract: The Riemann problem for two-dimensional gas dynamics with isentropic or polytropic gas is considered. The initial data is constant in each quadrant and chosen so that only a rarefaction wave, shock wave, or slip line connects two neighboring constant initial states. With this restriction sixteen (respectively, fifteen) genuinely different wave combinations for isentropic (respectively, polytropic) gas exist. For each configuration the numerical solution is analyzed and illustrated by contour plots. Additionally, the required relations for the initial data and the symmetry properties of the solutions are given. The chosen calculations correspond closely to the cases studied by T. Zhang and Y. Zheng [SIAM J. Math. Anal., 21 (1990), pp. 593–630], so that the analytical theory can be directly compared to our numerical study.

355 citations

Journal ArticleDOI
TL;DR: The ion density decreases by up to two orders of magnitude at the forward end of the foot of the bow shock profile, suggesting that the ions are reflected by the shock specularly, and may enhance downstream ion thermalization.
Abstract: Data from ISEE 1 and 2 spacecraft were used to study the evolution of the ion distributions in the perpendicular terrestrial bow shock. The plasma data were taken during passage of the spacecraft downstream of and through the shock. Solar wind ions had velocities ranging from Mach 2-12.4, and reflected ions featured a relative density of 1-3 percent of the solar wind density at Mach 2 to 15-25 percent at Mach 8-12. Computer simulations have indicated that the ions provide essential dissipation at the shock and gyrate about the magnetic field lines in the plasma rest frame at a speed twice that of the normal incident solar wind flow. The ion density decreases by up to two orders of magnitude at the forward end of the foot of the shock profile, suggesting that the ions are reflected by the shock specularly, and may enhance downstream ion thermalization.

352 citations


Network Information
Related Topics (5)
Turbulence
112.1K papers, 2.7M citations
88% related
Magnetic field
167.5K papers, 2.3M citations
85% related
Boundary layer
64.9K papers, 1.4M citations
83% related
Reynolds number
68.4K papers, 1.6M citations
82% related
Boundary value problem
145.3K papers, 2.7M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023754
20221,519
2021986
2020989
20191,091
20181,064