scispace - formally typeset
Search or ask a question
Topic

Shock wave

About: Shock wave is a research topic. Over the lifetime, 36184 publications have been published within this topic receiving 635848 citations. The topic is also known as: Shock waves & shockwave.


Papers
More filters
26 Sep 1952
TL;DR: In this article, an arbitrary weak spatial distribution of vorticity can be represented in terms of plane sinusoidal shear waves of all orientations and wave lengths (Fourier integral).
Abstract: An arbitrary weak spatial distribution of vorticity can be represented in terms of plane sinusoidal shear waves of all orientations and wave lengths (Fourier integral). The analysis treats the passage of a single representative weak shear wave through a plane shock and shows refraction and modification of the shear wave with simultaneous generation of an acoustically intense sound wave. Applications to turbulence and to noise in supersonic wind tunnels are indicated.

227 citations

Journal ArticleDOI
TL;DR: In this paper, a three-axis search coil magnetometer is used to measure magnetic fluctuations at frequencies up to 4 kHz, a waveform unit (up to either 10 Hz or 180 Hz) and a Spectrum Analyser (upto 4 kHz) for the Spatio Temporal Analysis of Field Fluctuations (STAFF) experiment.
Abstract: . The Spatio Temporal Analysis of Field Fluctuations (STAFF) experiment is one of the five experiments, which constitute the Cluster Wave Experiment Consortium (WEC). STAFF consists of a three-axis search coil magnetometer to measure magnetic fluctuations at frequencies up to 4 kHz, a waveform unit (up to either 10 Hz or 180 Hz) and a Spectrum Analyser (up to 4 kHz). The Spectrum Analyser combines the 3 magnetic components of the waves with the two electric components measured by the Electric Fields and Waves experiment (EFW) to calculate in real time the 5 × 5 Hermitian cross-spectral matrix at 27 frequencies distributed logarithmically in the frequency range 8 Hz to 4 kHz. The time resolution varies between 0.125 s and 4 s. The first results show the capabilities of the experiment, with examples in different regions of the magnetosphere-solar wind system that were encountered by Cluster at the beginning of its operational phase. First results obtained by the use of some of the tools that have been prepared specifically for the Cluster mission are described. The characterisation of the motion of the bow shock between successive crossings, using the reciprocal vector method, is given. The full characterisation of the waves analysed by the Spectrum Analyser, thanks to a dedicated program called PRASSADCO, is applied to some events; in particular a case of very confined electromagnetic waves in the vicinity of the equatorial region is presented and discussed. Key words. Magnetospheric physics (magnetopause, cusp and boundary layer) – Space plasma physics (waves and instabilities; shock waves)

226 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the injection and acceleration of thermal solar wind ions at the quasi-parallel earth's bow shock during radial interplanetary magnetic field conditions and found that the spectral observations are in good agreement with the predictions of the simulation when it is assumed that all accelerated ions originate in the solar wind and are injected into the acceleration mechanism by thermal leakage from the downstream plasma.
Abstract: The injection and acceleration of thermal solar wind ions at the quasi-parallel earth's bow shock during radial interplanetary magnetic field conditions is investigated. Active Magnetospheric Particle Tracer Explorers/Ion Release Module satellite observations of complete proton spectra, and of heavy ion spectra above 10 keV/Q, made on September 12, 1984 near the nose of the shock, are presented and compared to the predictions of a Monte Carlo shock simulation which includes diffusive shock acceleration. It is found that the spectral observations are in good agreement with the predictions of the simulation when it is assumed that all accelerated ions originate in the solar wind and are injected into the acceleration mechanism by thermal leakage from the downstream plasma. The efficiency, which is determined directly from the downstream observations, is high, with at least 15 percent of the solar wind energy flux going into accelerated particles. The comparisons allow constraints to be placed on the rigidity dependence of the scattering mean free path and suggest that the upstream solar wind must be slowed substantially by backstreaming accelerated ions prior to undergoing a sharp transition in the viscous subshock.

226 citations

Journal ArticleDOI
TL;DR: In this article, the authors used large hybrid simulations to study ion acceleration and generation of magnetic turbulence due to the streaming of particles that are self-consistently accelerated at non-relativistic shocks.
Abstract: We use large hybrid simulations to study ion acceleration and generation of magnetic turbulence due to the streaming of particles that are self-consistently accelerated at non-relativistic shocks. When acceleration is efficient, we find that the upstream magnetic field is significantly amplified. The total amplification factor is larger than 10 for shocks with Alfvenic Mach number M = 100, and scales with the square root of M. The spectral energy density of excited magnetic turbulence is determined by the energy distribution of accelerated particles, and for moderately strong shocks (M ≲ 30) agrees well with the prediction of resonant streaming instability, in the framework of quasilinear theory of diffusive shock acceleration. For M ≳ 30, instead, Bell's non-resonant hybrid (NRH) instability is predicted and found to grow faster than resonant instability. NRH modes are excited far upstream by escaping particles, and initially grow without disrupting the current, their typical wavelengths being much shorter than the current ions' gyroradii. Then, in the nonlinear stage, most unstable modes migrate to larger and larger wavelengths, eventually becoming resonant in wavelength with the driving ions, which start diffuse. Ahead of strong shocks we distinguish two regions, separated by the free-escape boundary: the far upstream, wheremore » field amplification is provided by the current of escaping ions via NRH instability, and the shock precursor, where energetic particles are effectively magnetized, and field amplification is provided by the current in diffusing ions. The presented scalings of magnetic field amplification enable the inclusion of self-consistent microphysics into phenomenological models of ion acceleration at non-relativistic shocks.« less

226 citations

Journal ArticleDOI
TL;DR: In this paper, the first gas-phase shock tube ignition delay time data for JP-8 and JP-A were reported, and their results have very low scatter and are in excellent agreement with the limited previous shock tube data for Jet-A. The new experimental results were compared with predictions of several kinetic mechanisms, using different jet fuel surrogate mixtures.

225 citations


Network Information
Related Topics (5)
Turbulence
112.1K papers, 2.7M citations
88% related
Magnetic field
167.5K papers, 2.3M citations
85% related
Boundary layer
64.9K papers, 1.4M citations
83% related
Reynolds number
68.4K papers, 1.6M citations
82% related
Boundary value problem
145.3K papers, 2.7M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023754
20221,519
2021986
2020989
20191,091
20181,064