scispace - formally typeset
Search or ask a question
Topic

Shock wave

About: Shock wave is a research topic. Over the lifetime, 36184 publications have been published within this topic receiving 635848 citations. The topic is also known as: Shock waves & shockwave.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the rotational line spectrum of the SiO was derived and the fractional abundance of SiO in the range 4 10-8 3 10-7 was derived.
Abstract: We study the production of SiO in the gas phase of molecular outflows, through the sputtering of Si-bearing material in refractory grain cores, which are taken to be olivine. We calculate also the rotational line spectrum of the SiO. The sputtering is driven by neutral particle impact on charged grains, in steady-state C-type shock waves, at the speed of ambipolar diffusion. The emission of the SiO molecule is calculated by means of an LVG code. A grid of models, with shock speeds in the range 20 s and preshock gas densities 104 H cm-3 , has been generated. We compare our results with those of an earlier study (Schilke et al. 1997). Improvements in the treatment of the coupling between the charged grains and the neutral fluid lead to narrower shock waves and lower fractions of Si (10%) being released into the gas phase. Erosion of grain cores is significant (1%) only for C-type shock speeds v s > 25 km s-1 , given the adopted properties of olivine. More realistic assumptions concerning the initial fractional abundance of O2 lead to SiO formation being delayed, so that it occurs in the cool, dense postshock flow. Good agreement is obtained with recent observations of SiO line intensities in the L1157 and L1448 molecular outflows. The inferred temperature, opacity, and SiO column density in the emission region differ significantly from those estimated by means of LVG “slab” models. The fractional abundance of SiO is deduced and found to be in the range 4 10-8 3 10-7 . Observed line profiles are wider than predicted and imply multiple, unresolved shock regions within the beam.

220 citations

Journal ArticleDOI
TL;DR: In this article, the electrical conductivity of high temperature argon produced by shock waves was investigated and it was shown that at low degrees of ionization, the diffusivity of electrons and thus the gas conductivity is determined by the cross section for electron-atom collisions which has been measured by mobility and by scattering techniques.
Abstract: Shock tube techniques for the production of shock waves up to Mach number 20 have been developed and reported previously by Resler, Lin, and Kantrowitz, J. Appl. Phys. 23, 1390 (1952). These techniques can produce high temperature gas with accurately known enthalpy (e.g., in argon 25 percent ionization has been produced following an incident shock). Spectroscopic studies of high temperature argon produced this way by Petscheck, Rose, Glick, Kane, and Kantrowitz, ``Spectroscopic studies of highly ionized argon produced by shock waves,'' J. Appl. Phys. 26, 83 (1955), showed that equilibrium ionization can be reached in the time available in these experiments (of the order of 100 microseconds). This paper reports a study of the electrical conductivity of high temperature argon produced by shock waves.At low degrees of ionization (less than 10−3 for argon), the diffusivity of electrons and thus the gas conductivity is determined by the cross section for electron‐atom collisions which has been measured by mobility and by scattering techniques. At high degrees of ionization (larger than 10−3 for argon) the diffusion of electrons is primarily limited by long range Coulomb interaction with positive ions and thus is independent of the chemical nature of the gas. Theoretical treatments of this case have been given by Chapman and Cowling, Cowling, and by Spitzer and Harm. At intermediate degrees of ionization additive effects of both of these resistivity mechanisms would be expected.Preliminary measurements with electrodes indicated large surface resistances. These effects were avoided by the development of an electrodeless technique in which the moving ionized gas deflected a magnetic field. Resultant voltages induced in a search coil were related to the conductivity distribution in the gas following the shock wave. At temperatures greater than 8000–10 000°K (depending on the gas density) the gas conductivity quickly reached a maximum value (up to 80 mhos/cm). The maximum conductivity obtained at these high temperatures agreed within 10 percent with theoretical expectations. It also agreed well with measurement of electrical resistivity in the cesium discharge by F. L. Mohler, Bur. Standards J. Research 21, 873 (1938). At lower temperatures the oscillograms indicated that the conductivity was still rising at the end of the hot region. Under these conditions maximum conductivities reached were much lower than the theoretical values. The ionization rate obtained varied considerably with the gas density.At the highest temperatures the conductivity declined quickly from the maximum value and the rate of decline could be correlated with the expected cooling due to recombination radiation. Indications of a high conductivity associated with luminous shock fronts were obtained.

220 citations

Journal ArticleDOI
TL;DR: In this paper, a multidimensional detonation structure consisting of the following elements: (1) a nonreactive, oblique shock, (2) an induction zone, (3) a set of deflagration waves, and (4) a reactive shock front is closely coupled with the energy release.
Abstract: Detonation structures generated by wedge‐induced, oblique shocks in hydrogen–oxygen–nitrogen mixtures were investigated by time‐dependent numerical simulations. The simulations show a multidimensional detonation structure consisting of the following elements: (1) a nonreactive, oblique shock, (2) an induction zone, (3) a set of deflagration waves, and (4) a ‘‘reactive shock,’’ in which the shock front is closely coupled with the energy release. In a wide range of flow and mixture conditions, this structure is stable and very resilient to disturbances in the flow. The entire detonation structure is steady on the wedge when the flow behind the structure is completely supersonic. If a part of the flow behind the structure is subsonic, the entire structure may become detached from the wedge and move upstream continuously.

219 citations

Journal ArticleDOI
TL;DR: In this article, three-dimensional hydrodynamic simulations of the evolution of core-collapse supernovae (SN) from blast-wave initiation by the neutrino-driven mechanism to shock breakout from the stellar surface are presented.
Abstract: We present three-dimensional hydrodynamic simulations of the evolution of core-collapse supernovae (SN) from blast-wave initiation by the neutrino-driven mechanism to shock breakout from the stellar surface, using an axis-free Yin-Yang grid and considering two 15 M ⊙ red supergiants (RSG) and two blue supergiants (BSG) of 15 M ⊙ and 20 M ⊙ . We demonstrate that the metal-rich ejecta in homologous expansion still carry fingerprints of asymmetries at the beginning of the explosion, but the final metal distribution is massively affected by the detailed progenitor structure. The most extended and fastest metal fingers and clumps are correlated with the biggest and fastest-rising plumes of neutrino-heated matter, because these plumes most effectively seed the growth of Rayleigh-Taylor (RT) instabilities at the C+O/He and He/H composition-shell interfaces after the passage of the SN shock. The extent of radial mixing, global asymmetry of the metal-rich ejecta, RT-induced fragmentation of initial plumes to smaller-scale fingers, and maximum Ni and minimum H velocities depend not only on the initial asphericity and explosion energy (which determine the shock and initial Ni velocities), but also on the density profiles and widths of C+O core and He shell and on the density gradient at the He/H transition, which leads to unsteady shock propagation and the formation of reverse shocks. Both RSG explosions retain a large global metal asymmetry with pronounced clumpiness and substructure, deep penetration of Ni fingers into the H-envelope (with maximum velocities of 4000–5000 km s-1 for an explosion energy around 1.5 bethe) and efficient inward H-mixing. While the 15 M ⊙ BSG shares these properties (maximum Ni speeds up to ~3500 km s-1 ), the 20 M ⊙ BSG develops a much more roundish geometry without pronounced metal fingers (maximum Ni velocities only ~2200 km s-1 ) because of reverse-shock deceleration and insufficient time for strong RT growth and fragmentation at the He/H interface.

218 citations

Journal ArticleDOI
TL;DR: The limits of energy focusing that can be achieved from collapsing bubbles in the far-off equilib- rium motion of fluids have yet to be determined either experimentally or theoretically.
Abstract: Sonoluminescence, the transduction of sound into light, is a phenom- enon that pushes fluid mechanics beyond its limit. An initial state with long wave- length and low Mach number, such as is realized for a gas bubble driven by an audible sound field, spontaneously focuses the energy density so as to generate supersonic motion and a different phase of matter, from which are then emitted picosecond flashes of broad-band UV light. Although the most rational picture of sonoluminescence involves the creation of a ''cold'' dense plasma by an imploding shock wave, neither the imploding shock nor the plasma has been directly observed. Attempts to attack sonoluminescence from the perspective of continuum mechanics have led to inter- esting issues related to bubble shape oscillations, shock shape instabilities, and shock propagation through nonideal media, and chemical hydrodynamics. The limits of energy focusing that can be achieved from collapsing bubbles in the far-off equilib- rium motion of fluids have yet to be determined either experimentally or theoretically.

218 citations


Network Information
Related Topics (5)
Turbulence
112.1K papers, 2.7M citations
88% related
Magnetic field
167.5K papers, 2.3M citations
85% related
Boundary layer
64.9K papers, 1.4M citations
83% related
Reynolds number
68.4K papers, 1.6M citations
82% related
Boundary value problem
145.3K papers, 2.7M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023754
20221,519
2021986
2020989
20191,091
20181,064