scispace - formally typeset
Search or ask a question
Topic

Shoot

About: Shoot is a research topic. Over the lifetime, 32188 publications have been published within this topic receiving 693348 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The results suggest that ESR1 may regulate the induction of shoot regeneration after the acquisition of competence for regeneration and before shoot formation, which is consistent with the physiological effects of E SR1 overexpression.
Abstract: Functional screening of an Arabidopsis cDNA library enabled the identification of a novel cDNA, ESR1 (for Enhancer of Shoot Regeneration), that can confer cytokinin-independent shoot formation when overexpressed in Arabidopsis root explants. Neither callus induction nor root formation was affected by ESR1 overexpression. ESR1 encodes a putative transcription factor with an AP2/EREBP domain. Surprisingly, ESR1 overexpression also greatly increased the efficiency of shoot regeneration from root explants in the presence of cytokinin, with a shift in the optimal cytokinin concentration required for this process. The effects of ESR1 overexpression on shoot regeneration are synergistic with those of cytokinin. Overexpression of ESR1 cannot induce callus formation or root formation, suggesting that its effects are specific to shoot formation. In wild-type Arabidopsis plants, ESR1 expression was induced by cytokinin. ESR1 transcript levels also increased transiently during shoot regeneration from root explants, most probably in response to cytokinin in the shoot-inducing medium. This transient increase occurred after the acquisition of competence for regeneration and before shoot formation, which is consistent with the physiological effects of ESR1 overexpression. Our results suggest that ESR1 may regulate the induction of shoot regeneration after the acquisition of competence for organogenesis.

288 citations

Journal ArticleDOI
TL;DR: Analysis of limited shoot plants during embryogenesis indicated a role forkn1 in shoot meristem maintenance, and a model for kn1 in maintenance of the morphogenetic zone of the shoot apical meristems is discussed.
Abstract: The knotted1 (kn1) gene of maize is expressed in meristems and is absent from leaves, including the site of leaf initiation within the meristem. Recessive mutations of kn1 have been described that limit the capacity to make branches and result in extra carpels. Dominant mutations suggest that kn1 function plays a role in maintaining cells in an undifferentiated state. We took advantage of a Ds-induced dominant allele in order to screen for additional recessive alleles resulting from mobilization of the Ds element. Analysis of one such allele revealed a novel embryonic shoot phenotype in which the shoot initiated zero to few organs after the cotyledon was made, resulting in plants that arrested as seedlings. We refer to this phenotype as a limited shoot. The limited shoot phenotype reflected loss of kn1 function, but its penetrance was background dependent. We examined meristem size and found that plants lacking kn1 function had shorter meristems than non-mutant siblings. Furthermore, meristems of restrictive inbreds were significantly shorter than meristems of permissive inbreds, implying a correlation between meristem height and kn1 gene function in the embryo. Analysis of limited shoot plants during embryogenesis indicated a role for kn1 in shoot meristem maintenance. We discuss a model for kn1 in maintenance of the morphogenetic zone of the shoot apical meristem.

288 citations

Journal ArticleDOI
TL;DR: It is demonstrated that normal levels of endogenous ABA are required to maintain shoot development, particularly leaf expansion, in well-watered tomato plants, independently of effects on plant water balance.
Abstract: To examine whether the reduced shoot growth of abscisic acid (ABA)-deficient mutants of tomato is independent of effects on plant water balance, flacca and notabilis were grown under controlled-humidity conditions so that their leaf water potentials were equal to or higher than those of well-watered wild-type plants throughout development. Most parameters of shoot growth remained markedly impaired and root growth was also greatly reduced. Additional experiments with flacca showed that shoot growth substantially recovered when wild-type levels of ABA were restored by treatment with exogenous ABA, even though improvement in leaf water potential was prevented. The ability of applied ABA to increase growth was greatest for leaf expansion, which was restored by 75%. The ethylene evolution rate of growing leaves was doubled in flacca compared to the wild type and treatment with silver thiosulphate to inhibit ethylene action partially restored shoot growth. The results demonstrate that normal levels of endogenous ABA are required to maintain shoot development, particularly leaf expansion, in well-watered tomato plants, independently of effects on plant water balance. The impairment of shoot growth caused by ABA deficiency is at least partly attributable to ethylene.

287 citations

Journal ArticleDOI
TL;DR: The results reveal that mutualistic interactions of phytohormones secreting endophytic fungi can ameliorate host plant growth and alleviate adverse effects of salt stress.
Abstract: Endophytic fungi are little known for exogenous secretion of phytohormones and mitigation of salinity stress, which is a major limiting factor for agriculture production worldwide. Current study was designed to isolate phytohormone producing endophytic fungus from the roots of cucumber plant and identify its role in plant growth and stress tolerance under saline conditions. We isolated nine endophytic fungi from the roots of cucumber plant and screened their culture filtrates (CF) on gibberellins (GAs) deficient mutant rice cultivar Waito-C and normal GAs biosynthesis rice cultivar Dongjin-byeo. The CF of a fungal isolate CSH-6H significantly increased the growth of Waito-C and Dongjin-byeo seedlings as compared to control. Analysis of the CF showed presence of GAs (GA1, GA3, GA4, GA8, GA9, GA12, GA20 and GA24) and indole acetic acid. The endophyte CSH-6H was identified as a strain of Paecilomyces formosus LHL10 on the basis of phylogenetic analysis of ITS sequence similarity. Under salinity stress, P. formosus inoculation significantly enhanced cucumber shoot length and allied growth characteristics as compared to non-inoculated control plants. The hypha of P. formosus was also observed in the cortical and pericycle regions of the host-plant roots and was successfully re-isolated using PCR techniques. P. formosus association counteracted the adverse effects of salinity by accumulating proline and antioxidants and maintaining plant water potential. Thus the electrolytic leakage and membrane damage to the cucumber plants was reduced in the association of endophyte. Reduced content of stress responsive abscisic acid suggest lesser stress convened to endophyte-associated plants. On contrary, elevated endogenous GAs (GA3, GA4, GA12 and GA20) contents in endophyte-associated cucumber plants evidenced salinity stress modulation. The results reveal that mutualistic interactions of phytohormones secreting endophytic fungi can ameliorate host plant growth and alleviate adverse effects of salt stress. Such fungal strain could be used for further field trials to improve agricultural productivity under saline conditions.

286 citations

Journal ArticleDOI
TL;DR: This study suggests that Lee is the most tolerant cultivar, and that there is a relationship between the salt tolerance of the cultivar and macronutrient accumulation in the leaves.
Abstract: Soil salinity is a major limitation to legume production in many areas of the world. The salinity sensitivity of soybean was studied to determine the effect of salinity on seed germination, shoot and root dry weights, and leaf mineral contents. Three soybean cultivars, Lee, Coquitt, and Clark 63, were planted in soils of different salinity levels. The electrical conductivity (EC) of the soils used in this experiment was 0.5 dS m−1. The soil salinity treatments were 0.5, 2.5 4.5, 6.5 and 8.5 dS m−1. Saline drainage water from a drainage canal with an EC of 15 dS m−1 was used to treat the soil samples in order to obtain the desired salinity levels. Germination percentages were recorded 10 days after planting. Shoot and root dry weights of 45-day-old plants were measured. Nutrient concentrations for Na+, K+, Ca2+, Mg2+ and Cl− were determined. Germination percentages were significantly reduced with increasing salinity levels. The cultivar Lee was less affected by salinity stress than Coquitt and Clark 63. At 8.5 dS m−1 a significant reduction in plant height was found in all three cultivars. However, Lee plants were taller than plants of the other two cultivars. Salinity stress induced a significant increase in leaf sodium (Na+) and chloride (Cl−) in all cultivars. However, the cultivar Lee maintained lower Na+ and Cl+ concentrations, a higher potassium (K+) concentration and a higher K+/Na+ ratio at higher salinity levels than Coquitt and Clark 63. Saline stress reduced the accumulation of K+, calcium (Ca2+) and magnesium (Mg2+) in the leaves of the cultivars studied. This study suggests that Lee is the most tolerant cultivar, and that there is a relationship between the salt tolerance of the cultivar and macronutrient accumulation in the leaves.

284 citations


Network Information
Related Topics (5)
Germination
51.9K papers, 877.9K citations
94% related
Hordeum vulgare
20.3K papers, 717.5K citations
91% related
Chlorophyll
18.2K papers, 587.4K citations
89% related
Photosynthesis
19.7K papers, 895.1K citations
89% related
Rhizosphere
21.9K papers, 756.3K citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20232,131
20224,637
2021953
20201,041
20191,064