scispace - formally typeset
Search or ask a question

Showing papers on "Sialic acid published in 2013"


Journal ArticleDOI
03 Oct 2013-Nature
TL;DR: The data show that antibiotic-induced disruption of the resident microbiota and subsequent alteration in mucosal carbohydrate availability are exploited by these two distantly related enteric pathogens in a similar manner, which suggests new therapeutic approaches for preventing diseases caused by antibiotic-associated pathogens.
Abstract: The human intestine, colonized by a dense community of resident microbes, is a frequent target of bacterial pathogens. Undisturbed, this intestinal microbiota provides protection from bacterial infections. Conversely, disruption of the microbiota with oral antibiotics often precedes the emergence of several enteric pathogens. How pathogens capitalize upon the failure of microbiota-afforded protection is largely unknown. Here we show that two antibiotic-associated pathogens, Salmonella enterica serovar Typhimurium (S. typhimurium) and Clostridium difficile, use a common strategy of catabolizing microbiota-liberated mucosal carbohydrates during their expansion within the gut. S. typhimurium accesses fucose and sialic acid within the lumen of the gut in a microbiota-dependent manner, and genetic ablation of the respective catabolic pathways reduces its competitiveness in vivo. Similarly, C. difficile expansion is aided by microbiota-induced elevation of sialic acid levels in vivo. Colonization of gnotobiotic mice with a sialidase-deficient mutant of Bacteroides thetaiotaomicron, a model gut symbiont, reduces free sialic acid levels resulting in C. difficile downregulating its sialic acid catabolic pathway and exhibiting impaired expansion. These effects are reversed by exogenous dietary administration of free sialic acid. Furthermore, antibiotic treatment of conventional mice induces a spike in free sialic acid and mutants of both Salmonella and C. difficile that are unable to catabolize sialic acid exhibit impaired expansion. These data show that antibiotic-induced disruption of the resident microbiota and subsequent alteration in mucosal carbohydrate availability are exploited by these two distantly related enteric pathogens in a similar manner. This insight suggests new therapeutic approaches for preventing diseases caused by antibiotic-associated pathogens.

801 citations


Journal ArticleDOI
25 Jul 2013-Nature
TL;DR: It is shown that the emerging H7N9 avian influenza virus poses a potentially high risk to humans, and current seasonal vaccination could not provide protection.
Abstract: Human infection associated with a novel reassortant avian influenza H7N9 virus has recently been identified in China. A total of 132 confirmed cases and 39 deaths have been reported. Most patients presented with severe pneumonia and acute respiratory distress syndrome. Although the first epidemic has subsided, the presence of a natural reservoir and the disease severity highlight the need to evaluate its risk on human public health and to understand the possible pathogenesis mechanism. Here we show that the emerging H7N9 avian influenza virus poses a potentially high risk to humans. We discover that the H7N9 virus can bind to both avian-type (α2,3-linked sialic acid) and human-type (α2,6-linked sialic acid) receptors. It can invade epithelial cells in the human lower respiratory tract and type II pneumonocytes in alveoli, and replicated efficiently in ex vivo lung and trachea explant culture and several mammalian cell lines. In acute serum samples of H7N9-infected patients, increased levels of the chemokines and cytokines IP-10, MIG, MIP-1β, MCP-1, IL-6, IL-8 and IFN-α were detected. We note that the human population is naive to the H7N9 virus, and current seasonal vaccination could not provide protection.

339 citations


Journal ArticleDOI
25 Jul 2013-Nature
TL;DR: The human H7 virus has acquired some of the receptor-binding characteristics that are typical of pandemic viruses, but its retained preference for avian receptor may restrict its further evolution towards a virus that could transmit efficiently between humans.
Abstract: Of the 132 people known to have been infected with H7N9 influenza viruses in China, 37 died, and many were severely ill Infection seems to have involved contact with infected poultry We have examined the receptor-binding properties of this H7N9 virus and compared them with those of an avian H7N3 virus We find that the human H7 virus has significantly higher affinity for α-2,6-linked sialic acid analogues ('human receptor') than avian H7 while retaining the strong binding to α-2,3-linked sialic acid analogues ('avian receptor') characteristic of avian viruses The human H7 virus does not, therefore, have the preference for human versus avian receptors characteristic of pandemic viruses X-ray crystallography of the receptor-binding protein, haemagglutinin (HA), in complex with receptor analogues indicates that both human and avian receptors adopt different conformations when bound to human H7 HA than they do when bound to avian H7 HA Human receptor bound to human H7 HA exits the binding site in a different direction to that seen in complexes formed by HAs from pandemic viruses and from an aerosol-transmissible H5 mutant The human-receptor-binding properties of human H7 probably arise from the introduction of two bulky hydrophobic residues by the substitutions Gln226Leu and Gly186Val The former is shared with the 1957 H2 and 1968 H3 pandemic viruses and with the aerosol-transmissible H5 mutant We conclude that the human H7 virus has acquired some of the receptor-binding characteristics that are typical of pandemic viruses, but its retained preference for avian receptor may restrict its further evolution towards a virus that could transmit efficiently between humans, perhaps by binding to avian-receptor-rich mucins in the human respiratory tract rather than to cellular receptors

278 citations


Book ChapterDOI
TL;DR: Variations in the receptor specificity are important determinants for host range, tissue tropism, pathogenicity, and transmissibility of these viruses.
Abstract: Sialic acid linked to glycoproteins and gangliosides is used by many viruses as a receptor for cell entry. These viruses include important human and animal pathogens, such as influenza, parainfluenza, mumps, corona, noro, rota, and DNA tumor viruses. Attachment to sialic acid is mediated by receptor binding proteins that are constituents of viral envelopes or exposed at the surface of non-enveloped viruses. Some of these viruses are also equipped with a neuraminidase or a sialyl-O-acetyl-esterase. These receptor-destroying enzymes promote virus release from infected cells and neutralize sialic acid-containing soluble proteins interfering with cell surface binding of the virus. Variations in the receptor specificity are important determinants for host range, tissue tropism, pathogenicity, and transmissibility of these viruses.

212 citations


Journal ArticleDOI
TL;DR: The most comprehensive array from the Consortium for Functional Glycomics contained the greatest diversity of sialylated glycans, but was not predictive of productive replication in the bronchus and lung.
Abstract: The first step in influenza infection of the human respiratory tract is binding of the virus to sialic (Sia) acid terminated receptors. The binding of different strains of virus for the receptor is determined by the α linkage of the sialic acid to galactose and the adjacent glycan structure. In this study the N- and O-glycan composition of the human lung, bronchus and nasopharynx was characterized by mass spectrometry. Analysis showed that there was a wide spectrum of both Sia α2-3 and α2-6 glycans in the lung and bronchus. This glycan structural data was then utilized in combination with binding data from 4 of the published glycan arrays to assess whether these current glycan arrays were able to predict replication of human, avian and swine viruses in human ex vivo respiratory tract tissues. The most comprehensive array from the Consortium for Functional Glycomics contained the greatest diversity of sialylated glycans, but was not predictive of productive replication in the bronchus and lung. Our findings indicate that more comprehensive but focused arrays need to be developed to investigate influenza virus binding in an assessment of newly emerging influenza viruses.

200 citations


Journal ArticleDOI
TL;DR: A review of the chemical properties, distribution and functions of di-, oligo- and polySia residues on glycoproteins are described in this article. But, considerably less attention has been paid to glycoprotein containing di- and oligoSia groups.
Abstract: Sialic acids (Sia) are involved in many biological activities and frequently exist as monosialyl residues at the non-reducing terminal end of glycoconjugates. Occasionally, polymerized structures in the form of disialic acid (diSia), oligosialic acid (oligoSia) and polysialic acid (polySia) are also found in glycoconjugates. In particular, polySia, which is an evolutionarily conserved epitope from sea urchin to humans, is one of the most biologically important glycotopes in vertebrates. The biological functions of polySia, especially on neural cell adhesion molecules, have been well studied and an in-depth body of knowledge concerning polySia has been accumulated. However, considerably less attention has been paid to glycoproteins containing di- and oligoSia groups. However, advances in analytical methods for detecting oligo/polymerized structures have allowed the identification and characterization of an increasing number of glycoproteins containing di/oligo/polySia chains in nature. In addition, sophisticated genetic techniques have also helped to elucidate the underlying mechanisms of polySia-mediated activities. In this review, recent advances in the study of the chemical properties, distribution and functions of di-, oligo- and polySia residues on glycoproteins are described.

140 citations


Journal ArticleDOI
TL;DR: The results indicate that P-3Fax-Neu5Ac is a powerful glycomimetic capable of inhibiting aberrant sialylation that can potentially be used for anticancer therapy.
Abstract: Cancer cells decorate their surface with a dense layer of sialylated glycans by upregulating the expression of sialyltransferases and other glycogenes. Although sialic acids play a vital role in many biologic processes, hypersialylation in particular has been shown to contribute to cancer cell progression and metastasis. Accordingly, selective strategies to interfere with sialic acid synthesis might offer a powerful approach in cancer therapy. In the present study, we assessed the potential of a recently developed fluorinated sialic acid analogue (P-3F(ax)-Neu5Ac) to block the synthesis of sialoglycans in murine melanoma cells and the consequences on cell adhesion, migration, and in vivo growth. The results showed that P-3F(ax)-Neu5Ac readily caused depletion of α2,3-/α2,6-linked sialic acids in B16F10 cells for several days. Long-term inhibition of sialylation for 28 days was feasible without affecting cell viability or proliferation. Moreover, P-3F(ax)-Neu5Ac proved to be a highly potent inhibitor of sialylation even at high concentrations of competing sialyltransferase substrates. P-3F(ax)-Neu5Ac-treated cancer cells exhibited impaired binding to poly-l-lysine, type I collagen, and fibronectin and diminished migratory capacity. Finally, blocking sialylation of B16F10 tumor cells with this novel sialic acid analogue reduced their growth in vivo. These results indicate that P-3F(ax)-Neu5Ac is a powerful glycomimetic capable of inhibiting aberrant sialylation that can potentially be used for anticancer therapy.

133 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the BV-associated bacterium Gardnerella vaginalis uses sialidase to break down and deplete sialic acid-containing mucus components in the vagina, and that this process of mucus barrier degradation and depletion also occurs in the clinical setting of BV.

132 citations


Journal ArticleDOI
TL;DR: Crystal structures of Fab fragments from three human antibodies that neutralize the 1957 pandemic H2N2 influenza virus in complex with H2 HA are reported and can be used as a starting point to design inhibitors targeting this conserved hydrophobic pocket in influenza viruses.
Abstract: Influenza virus hemagglutinin (HA) binds to sialic acid receptors on the host cell, but receptor analogs have failed as viral-entry inhibitors. Now crystal structures of H2 HA in complex with Fab fragments from three neutralizing antibodies reveal a new mode to target HA. All three antibodies use an aromatic residue to plug a conserved cavity in the HA-binding site for sialic acid.

129 citations


Journal ArticleDOI
21 Jun 2013-Science
TL;DR: The complex structures of wild-type and mutant HAs derived from an Indonesia H5N1 virus bound to either avian or human receptor sialic acid analogs are determined, providing a structural and biophysical basis for the H5n1 adaptation to acquire human, but maintain avian, receptor-binding properties.
Abstract: Recent studies have identified several mutations in the hemagglutinin (HA) protein that allow the highly pathogenic avian H5N1 influenza A virus to transmit between mammals by airborne route. Here, we determined the complex structures of wild-type and mutant HAs derived from an Indonesia H5N1 virus bound to either avian or human receptor sialic acid analogs. A cis/trans conformational change in the glycosidic linkage of the receptor analog was observed, which explains how the H5N1 virus alters its receptor-binding preference. Furthermore, the mutant HA possessed low affinities for both avian and human receptors. Our findings provide a structural and biophysical basis for the H5N1 adaptation to acquire human, but maintain avian, receptor-binding properties.

111 citations



Journal ArticleDOI
TL;DR: In this article, a sialic acid capture-and-release protocol was proposed to enrich tryptic N- and O-glycopeptides from human cerebrospinal fluid glycoproteins using nano-LC-ESI-MS/MS with collision-induced dissociation (CID) for glycopeptide characterization.
Abstract: The GalNAc O-glycosylation on Ser/Thr residues of extracellular proteins has not been well characterized from a proteomics perspective. We previously reported a sialic acid capture-and-release protocol to enrich tryptic N- and O-glycopeptides from human cerebrospinal fluid glycoproteins using nano-LC-ESI-MS/MS with collision-induced dissociation (CID) for glycopeptide characterization. Here, we have introduced peptide N-glycosidase F (PNGase F) pretreatment of CSF samples to remove the N-glycans facilitating the selective characterization of O-glycopeptides and enabling the use of an automated CID-MS(2)/MS(3) search protocol for glycopeptide identification. We used electron-capture and -transfer dissociation (ECD/ETD) to pinpoint the glycosylation site(s) of the glycopeptides, identified as predominantly core-1-like HexHexNAc-O- structure attached to one to four Ser/Thr residues. We characterized 106 O-glycosylations and found Pro residues preferentially in the n - 1, n + 1, and/or n + 3 positions in relation to the Ser/Thr attachment site (n). The characterization of glycans and glycosylation sites in glycoproteins from human clinical samples provides a basis for future studies addressing the biological and diagnostic importance of specific protein glycosylations in relation to human disease.

Journal ArticleDOI
TL;DR: The glyconanoparticles were able to discriminate between human ( α2,6 binding) and avian (α2,3 binding) RG14 (H5N1) influenza virus highlighting the binding specificity of the trivalent α 2,6-thio-linked sialic acid ligand.
Abstract: A plasmonic bioassay for the specific detection of human influenza virus has been developed based on gold nanoparticles functionalised with a designed and synthesised thiolated trivalent α2,6-thio-linked sialic acid derivative. The glyconanoparticles consist of the thiolated trivalent α2,6-thio-linked sialic acid derivative and a thiolated polyethylene glycol (PEG) derivative self-assembled onto the gold surface. Varying ratios of the trivalent α2,6-thio-linked sialic acid ligand and the PEG ligand were used; a ratio of 25:75 was found to be optimum for the detection of human influenza virus X31 (H3N2). In the presence of the influenza virus a solution of the glyconanoparticles aggregate following the binding of the trivalent α2,6-thio-linked sialic acid ligand to the haemagglutinin on the surface of the virus. The aggregation of the glycoparticles with the influenza virus induces a colour change of the solution within 30 min. Non-purified influenza virus in allantoic fluid was successfully detected using the functionalised glyconanoparticles. A comparison between the trivalent and a monovalent α2,6-thio-linked sialic acid functionalised nanoparticles confirmed that more rapid results, with greater sensitivity, were achieved using the trivalent ligand for the detection of the X31 virus. Importantly, the glyconanoparticles were able to discriminate between human (α2,6 binding) and avian (α2,3 binding) RG14 (H5N1) influenza virus highlighting the binding specificity of the trivalent α2,6-thio-linked sialic acid ligand.

Journal ArticleDOI
21 Jun 2013-PLOS ONE
TL;DR: It is concluded that the year-to-year variation in receptor binding specificity is a consequence of amino acid sequence changes driven by antigenic drift, and that viruses with quite different binding specificity and avidity are equally fit to infect and transmit in the human population.
Abstract: It is generally accepted that human influenza viruses bind glycans containing sialic acid linked α2–6 to the next sugar, that avian influenza viruses bind glycans containing the α2–3 linkage, and that mutations that change the binding specificity might change the host tropism. We noted that human H3N2 viruses showed dramatic differences in their binding specificity, and so we embarked on a study of representative human H3N2 influenza viruses, isolated from 1968 to 2012, that had been isolated and minimally passaged only in mammalian cells, never in eggs. The 45 viruses were grown in MDCK cells, purified, fluorescently labeled and screened on the Consortium for Functional Glycomics Glycan Array. Viruses isolated in the same season have similar binding specificity profiles but the profiles show marked year-to-year variation. None of the 610 glycans on the array (166 sialylated glycans) bound to all viruses; the closest was Neu5Acα2–6(Galβ1–4GlcNAc)3 in either a linear or biantennary form, that bound 42 of the 45 viruses. The earliest human H3N2 viruses preferentially bound short, branched sialylated glycans while recent viruses bind better to long polylactosamine chains terminating in sialic acid. Viruses isolated in 1996, 2006, 2010 and 2012 bind glycans with α2–3 linked sialic acid; for 2006, 2010 and 2012 viruses this binding was inhibited by oseltamivir, indicating binding of α2–3 sialylated glycans by neuraminidase. More significantly, oseltamivir inhibited virus entry of 2010 and 2012 viruses into MDCK cells. All of these viruses were representative of epidemic strains that spread around the world, so all could infect and transmit between humans with high efficiency. We conclude that the year-to-year variation in receptor binding specificity is a consequence of amino acid sequence changes driven by antigenic drift, and that viruses with quite different binding specificity and avidity are equally fit to infect and transmit in the human population.

Journal ArticleDOI
TL;DR: This approach expands the capability of metabolic glycan labeling to probe sialylation and glycan-protein interactions by using a new class of bifunctional sialic acid analogues containing two distinct chemical reporters at the N-acyl and C9 positions.
Abstract: Sialic acid analogues containing a unique chemical functionality or chemical reporter have been metabolically incorporated into sialylated glycans. This process, termed metabolic glycan labeling, has emerged as a powerful tool for studying sialylation as well as other types of glycosylation. Currently, this technique can install only a single functionality. Here we describe a strategy for dual labeling of sialylated glycans using a new class of bifunctional sialic acid analogues containing two distinct chemical reporters at the N-acyl and C9 positions. These bifunctional unnatural sialic acids were metabolically incorporated into cellular glycans, where the two chemical reporters exerted their distinct functions. This approach expands the capability of metabolic glycan labeling to probe sialylation and glycan–protein interactions.

Journal ArticleDOI
TL;DR: This paper attempts to describe the variety of bacterial sialometabolic systems by focusing on recent advances at the molecular and host-microbe-interaction levels, and hopes this focus will provide a framework for further research that holds promise for better understanding of the metabolic interplay between bacterial growth and the host environment.
Abstract: Sialic acids are structurally diverse nine-carbon ketosugars found mostly in humans and other animals as the terminal units on carbohydrate chains linked to proteins or lipids. The sialic acids function in cell-cell and cell-molecule interactions necessary for organismic development and homeostasis. They not only pose a barrier to microorganisms inhabiting or invading an animal mucosal surface, but also present a source of potential carbon, nitrogen, and cell wall metabolites necessary for bacterial colonization, persistence, growth, and, occasionally, disease. The explosion of microbial genomic sequencing projects reveals remarkable diversity in bacterial sialic acid metabolic potential. How bacteria exploit host sialic acids includes a surprisingly complex array of metabolic and regulatory capabilities that is just now entering a mature research stage. This paper attempts to describe the variety of bacterial sialometabolic systems by focusing on recent advances at the molecular and host-microbe-interaction levels. The hope is that this focus will provide a framework for further research that holds promise for better understanding of the metabolic interplay between bacterial growth and the host environment. An ability to modify or block this interplay has already yielded important new insights into potentially new therapeutic approaches for modifying or blocking bacterial colonization or infection.

Journal ArticleDOI
10 Dec 2013-PLOS ONE
TL;DR: The combination of affinity to human epithelial epitopes, production by conidia and pro-inflammatory activity is remarkable and shows that AFL might be an important virulence factor involved in an early stage of A. fumigatus infection.
Abstract: Aspergillus fumigatus is an important allergen and opportunistic pathogen. Similarly to many other pathogens, it is able to produce lectins that may be involved in the host-pathogen interaction. We focused on the lectin AFL, which was prepared in recombinant form and characterized. Its binding properties were studied using hemagglutination and glycan array analysis. We determined the specificity of the lectin towards l-fucose and fucosylated oligosaccharides, including alpha 1-6 linked core-fucose, which is an important marker for cancerogenesis. Other biologically relevant saccharides such as sialic acid, d-mannose or d-galactose were not bound. Blood group epitopes of the ABH and Lewis systems were recognized, Le(Y) being the preferred ligand among others. To provide a correlation between the observed functional characteristics and structural basis, AFL was crystallized in a complex with methyl-alpha,L-selenofucoside and its structure was solved using the SAD method. Six binding sites, each with different compositions, were identified per monomer and significant differences from the homologous AAL lectin were found. Structure-derived peptides were utilized to prepare anti-AFL polyclonal antibodies, which suggested the presence of AFL on the Aspergillus' conidia, confirming its expression in vivo. Stimulation of human bronchial cells by AFL led to IL-8 production in a dose-dependent manner. AFL thus probably contributes to the inflammatory response observed upon the exposure of a patient to A. fumigatus. The combination of affinity to human epithelial epitopes, production by conidia and pro-inflammatory activity is remarkable and shows that AFL might be an important virulence factor involved in an early stage of A. fumigatus infection

Journal ArticleDOI
TL;DR: Data suggest that Siglec-E recognizes the intact neuronal glycocalyx and has neuroprotective function by preventing phagocytosis and the associated oxidative burst.
Abstract: Sialic acid-binding Ig-like lectins (Siglecs) are members of the Ig superfamily that recognize sialic acid residues of glycoproteins. Siglec-E is a mouse CD33-related Siglec that preferentially binds to sialic acid residues of the cellular glycocalyx. Here, we demonstrate gene transcription and protein expression of Siglec-E by cultured mouse microglia. Siglec-E on microglia inhibited phagocytosis of neural debris and prevented the production of superoxide radicals induced by challenge with neural debris. Soluble extracellular Siglec-E receptor protein bound to the neural glycocalyx. Coculture of mouse microglia and neurons demonstrated a neuroprotective effect of microglial Siglec-E that was dependent on neuronal sialic acid residues. Increased neurotoxicity of microglia after knockdown of Siglece mRNA was neutralized by the reactive oxygen species scavenger Trolox. Data suggest that Siglec-E recognizes the intact neuronal glycocalyx and has neuroprotective function by preventing phagocytosis and the associated oxidative burst.

Book ChapterDOI
TL;DR: An overview of structure, biochemistry, and genetics of the bifunctional enzyme and its complex regulation is given and diseases related to UDP-N-acetylglucosamine 2-epimerase/N- acetylmannosamine kinase are focused on.
Abstract: UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase is the key enzyme of sialic acid biosynthesis in vertebrates. It catalyzes the first two steps of the cytosolic formation of CMP-N-acetylneuraminic acid from UDP-N-acetylglucosamine. In this review we give an overview of structure, biochemistry, and genetics of the bifunctional enzyme and its complex regulation. Furthermore, we will focus on diseases related to UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase.

Journal ArticleDOI
TL;DR: A unified convergent strategy for the rapid production of bi-, tri-, and tetra-antennary complex type N-glycans with and without terminal N-acetylneuraminic acid residues connected via the α-2,6 or α- 2,3 linkages is reported.
Abstract: The structural diversity of glycoproteins often comes from post-translational glycosylation with heterogeneous N-glycans. Understanding the complexity of glycans related to various biochemical processes demands a well-defined synthetic sugar library. We report herein a unified convergent strategy for the rapid production of bi-, tri-, and tetra-antennary complex type N-glycans with and without terminal N-acetylneuraminic acid residues connected via the α-2,6 or α-2,3 linkages. Moreover, using sialyltransferases to install sialic acid can minimize synthetic steps through the use of shared intermediates to simplify the complicated procedures associated with conventional sialic acid chemistry. Furthermore, these synthetic complex oligosaccharides were compiled to create a glycan array for the profiling of HIV-1 broadly neutralizing antibodies PG9 and PG16 that were isolated from HIV infected donors. From the study of antibody PG16, we identified potential natural and unnatural glycan ligands, which may facilitate the design of carbohydrate-based immunogens and hasten the HIV vaccine development.

Journal ArticleDOI
TL;DR: A linear correlation was observed between the change in optical density and dilution of chemically inactivated influenza B/Victoria and influenza B-Yamagata and the upper limit of the linearity can be extended with the use of more sialic acid–gold nanoparticles.

Journal ArticleDOI
TL;DR: The existing evidence points to a potential of DC surface sialylation as a therapeutic target to improve and diversify DC-based therapies and to affect immune-critical DC functions by altering antigen endocytosis, pathogen and tumor cell recognition, cell recruitment, and capacity for T cell priming.
Abstract: Glycans decorating cell surface and secreted proteins and lipids occupy the juncture where critical host-host and host-pathogen interactions occur. The role of glycan epitopes in cell-cell and cell-pathogen adhesive events is already well-established, and cell surface glycan structures change rapidly in response to stimulus and inflammatory cues. Despite the wide acceptance that glycans are centrally implicated in immunity, exactly how glycan changes contribute to the overall immune response remains poorly defined.The terminal position of the glycan chains are usually occupied by sialic acids. And sialic acid-modified structures form the key fundamental determinants for a number of receptors with known involvement in cellular adhesiveness and cell trafficking, such as the Selectins and the Siglec families of carbohydrate recognizing receptors.On dendritic cells (DC), sialic acid-modified structures are involved in all their functions and their expression changes along differentiation and activation with important functional implications. DCs preside over the transition from innate to the adaptive immune repertoires, and no other cell has the relevance of role in antigen screening, uptake and presentation to ultimately trigger the adaptive immune response. This review focuses on the developmental regulation of DC surface sialic acids and how manipulation of DC surface sialic acids can affect immune-critical DC functions by altering antigen endocytosis, pathogen and tumor cell recognition, cell recruitment, and capacity for T cell priming. The existing evidence points to a potential of DC surface sialylation as a therapeutic target to improve and diversify DC-based therapies.

Journal ArticleDOI
TL;DR: This new quantitative glycoform profiling method with use of MALDI-TOF in positive ion mode was validated by first comparing N-glycans isolated from fetuin and serum and was exploited to analyze the effects of increased metabolic flux through the sialic acid pathway in SW1990 pancreatic cancer cells by using a colabeling strategy with light and heavy toluidine.
Abstract: The analysis of sialylated glycans is critical for understanding the role of sialic acid in normal biological processes as well as in disease. However, the labile nature of sialic acid typically renders routine analysis of this monosaccharide by mass spectrometric methods difficult. To overcome this difficulty we pursued derivatization methodologies, extending established acetohydrazide approaches to aniline-based methods, and finally to optimized p-toluidine derivatization. This new quantitative glycoform profiling method with use of MALDI-TOF in positive ion mode was validated by first comparing N-glycans isolated from fetuin and serum and was then exploited to analyze the effects of increased metabolic flux through the sialic acid pathway in SW1990 pancreatic cancer cells by using a colabeling strategy with light and heavy toluidine. The latter results established that metabolic flux, in a complementary manner to the more well-known impact of sialyltransferase expression, can critically modulate the si...

Journal ArticleDOI
TL;DR: It is demonstrated that Neu5Ac can serve as an S. aureus carbon source, and a previously uncharacterized chromosomal locus (nan) that is required for Neu 5Ac utilization is identified, and data indicate that the nan gene cluster is essential for NeU5Ac utilization and may perform an important function for S.aureus survival in the host.
Abstract: Staphylococcus aureus is a ubiquitous bacterial pathogen that is the causative agent of numerous acute and chronic infections. S. aureus colonizes the anterior nares of a significant portion of the healthy adult population, but the mechanisms of colonization remain incompletely defined. Sialic acid (N-acetylneuraminic acid [Neu5Ac]) is a bioavailable carbon and nitrogen source that is abundant on mucosal surfaces and in secretions in the commensal environment. Our findings demonstrate that Neu5Ac can serve as an S. aureus carbon source, and we have identified a previously uncharacterized chromosomal locus (nan) that is required for Neu5Ac utilization. Molecular characterization of the nan locus indicates that it contains five genes, organized into four transcripts, and the genes were renamed nanE, nanR, nanK, nanA, and nanT. Initial studies with gene deletions indicate that nanT, predicted to encode the Neu5Ac transporter, and nanA and nanE, predicted to encode catabolic enzymes, are essential for growth on Neu5Ac. Furthermore, a nanE deletion mutant exhibits a growth inhibition phenotype in the presence of Neu5Ac. Transcriptional fusions and Northern blot analyses indicate that NanR represses the expression of both the nanAT and nanE transcripts, which can be relieved with Neu5Ac. Electrophoretic mobility studies demonstrate that NanR binds to the nanAT and nanE promoter regions, and the Neu5Ac catabolic intermediate N-acetylmannosamine-6-phosphate (ManNAc-6P) relieves NanR promoter binding. Taken together, these data indicate that the nan gene cluster is essential for Neu5Ac utilization and may perform an important function for S. aureus survival in the host.

Journal ArticleDOI
TL;DR: Changes in glycosylation are mainly caused by an increased expression of sialyltransferases, which glycosy-late exposed glycans at their terminal positions with anionicmonosaccharide sialic acid residues (Sia) appear protected against the immune defensesystem, and as a result, malignancy is increased.
Abstract: These changes in glycosylation are mainly caused byan increased expression of sialyltransferases, which glycosy-late exposed glycans at their terminal positions with anionicmonosaccharide sialic acid residues (Sia). Tumor cells over-expressing Sia appear protected against the immune defensesystem, and as a result, malignancy is increased.

Journal ArticleDOI
TL;DR: Emerging data demonstrating that mammalian neuraminidase 1, well known for its lysosomal catabolic function, is also targeted to the cell surface and assumes the previously unrecognized role as a structural and functional modulator of cellular receptors are summarized.
Abstract: Terminal sialic acid residues are found in abundance in glycan chains of glycoproteins and glycolipids on the surface of all live cells forming an outer layer of the cell originally known as glycocalyx. Their presence affects the molecular properties and structure of glycoconjugates, modifying their function and interactions with other molecules. Consequently, the sialylation state of glycoproteins and glycolipids has been recognized as a critical factor modulating molecular recognitions inside the cell, between the cells, between the cells and the extracellular matrix, and between the cells and certain exogenous pathogens. Until recently sialyltransferases that catalyze transfer of sialic acid residues to the glycan chains in the process of their biosynthesis were thought to be mainly responsible for the creation and maintenance of a temporal and spatial diversity of sialylated moieties. However, the growing evidence suggests that in mammalian cells, at least equally important roles belong to sialidases/neuraminidases, which are located on the cell surface and in intracellular compartments, and may either initiate the catabolism of sialoglycoconjugates or just cleave their sialic acid residues, and thereby contribute to temporal changes in their structure and functions. The current review summarizes emerging data demonstrating that mammalian neuraminidase 1, well known for its lysosomal catabolic function, is also targeted to the cell surface and assumes the previously unrecognized role as a structural and functional modulator of cellular receptors.

Journal ArticleDOI
TL;DR: The results suggested that such dual ligand dendritic system (SMPPI) hold potential to enhance biocompatibility and site specific delivery of antiretroviral drug, ZDV.

Journal ArticleDOI
TL;DR: PAL and GAL can be employed as complementary methods of chemical tagging for targeted proteomics of glycoprotein subpopulations and identification of glycosylation sites of proteins on cells with an altered sialic acid-deficient status.
Abstract: In this paper, we present two complementary strategies for enrichment of glycoproteins on living cells that combine the desirable attributes of “robust enrichment” afforded by covalent-labeling techniques and “specificity for glycoproteins” typically provided by lectin or antibody affinity reagents. Our strategy involves the selective introduction of aldehydes either into sialic acids by periodate oxidation (periodate oxidation and aniline-catalyzed oxime ligation (PAL)) or into terminal galactose and N-acetylgalactosamine residues by galactose oxidase (galactose oxidase and aniline-catalyzed oxime ligation (GAL)), followed by aniline-catalyzed oxime ligation with aminooxy-biotin to biotinylate the glycans of glycoprotein subpopulations with high efficiency and cell viability. As expected, the two methods exhibit reciprocal tagging efficiencies when applied to fully sialylated cells compared with sialic acid-deficient cells. To assess the utility of these labeling methods for glycoproteomics, we enriched the PAL- and GAL-labeled (biotinylated) glycoproteome by adsorption onto immobilized streptavidin. Glycoprotein identities (IDs) and N-glycosylation site information were then obtained by liquid chromatography-tandem mass spectrometry on total tryptic peptides and on peptides subsequently released from N-glycans still bound to the beads using peptide N-glycosidase F. A total of 175 unique N-glycosylation sites were identified, belonging to 108 nonredundant glycoproteins. Of the 108 glycoproteins, 48 were identified by both methods of labeling and the remainder was identified using PAL on sialylated cells (40) or GAL on sialic acid-deficient cells (20). Our results demonstrate that PAL and GAL can be employed as complementary methods of chemical tagging for targeted proteomics of glycoprotein subpopulations and identification of glycosylation sites of proteins on cells with an altered sialylation status.

Journal ArticleDOI
TL;DR: A ferret tracheal differentiated primary epithelial cell culture system provides a valuable in vitro model for studying cellular tropism, infectivity, and the pathogenesis of influenza viruses.
Abstract: Tropism and adaptation of influenza viruses to new hosts is partly dependent on the distribution of the sialic acid (SA) receptors to which the viral hemagglutinin (HA) binds. Ferrets have been established as a valuable in vivo model of influenza virus pathogenesis and transmission because of similarities to humans in the distribution of HA receptors and in clinical signs of infection. In this study, we developed a ferret tracheal differentiated primary epithelial cell culture model that consisted of a layered epithelium structure with ciliated and nonciliated cells on its apical surface. We found that human-like (α2,6-linked) receptors predominated on ciliated cells, whereas avian-like (α2,3-linked) receptors, which were less abundant, were presented on nonciliated cells. When we compared the tropism and infectivity of three human (H1 and H3) and two avian (H1 and H5) influenza viruses, we observed that the human influenza viruses primarily infected ciliated cells and replicated efficiently, whereas a highly pathogenic avian H5N1 virus (A/Vietnam/1203/2004) replicated efficiently within nonciliated cells despite a low initial infection rate. Furthermore, compared to other influenza viruses tested, VN/1203 virus replicated more efficiently in cells isolated from the lower trachea and at a higher temperature (37°C) compared to a lower temperature (33°C). VN/1203 virus infection also induced higher levels of immune mediator genes and cell death, and virus was recovered from the basolateral side of the cell monolayer. This ferret tracheal differentiated primary epithelial cell culture system provides a valuable in vitro model for studying cellular tropism, infectivity, and the pathogenesis of influenza viruses.

Journal ArticleDOI
21 Mar 2013-Diabetes
TL;DR: Genetically modified mice with ∼10% of the normal Neu1 activity exposed to a high-fat diet develop hyperglycemia and insulin resistance twice as fast as their wild-type counterparts and are identified as a novel component of the signaling pathways of energy metabolism and glucose uptake.
Abstract: Neuraminidases (sialidases) catalyze the removal of sialic acid residues from sialylated glycoconjugates. We now report that mammalian neuraminidase 1 (Neu1), in addition to its catabolic function in lysosomes, is transported to the cell surface where it is involved in the regulation of insulin signaling. Insulin binding to its receptor rapidly induces interaction of the receptor with Neu1, which hydrolyzes sialic acid residues in the glycan chains of the receptor and, consequently, induces its activation. Cells from sialidosis patients with a genetic deficiency of Neu1 show impairment of insulin-induced phosphorylation of downstream protein kinase AKT, and treatment of these cells with purified Neu1 restores signaling. Genetically modified mice with ∼10% of the normal Neu1 activity exposed to a high-fat diet develop hyperglycemia and insulin resistance twice as fast as their wild-type counterparts. Together, these studies identify Neu1 as a novel component of the signaling pathways of energy metabolism and glucose uptake.