Topic
Siderophore
About: Siderophore is a research topic. Over the lifetime, 3382 publications have been published within this topic receiving 171707 citations. The topic is also known as: Siderophores & Siderochromes.
Papers published on a yearly basis
Papers
More filters
TL;DR: The universal method to detect and determine siderophores was developed by using their high affinity for iron(III) and was successfully used to screen mutants in the iron uptake system of two Rhizobium meliloti strains, DM5 and 1021.
Abstract: A universal method to detect and determine siderophores was developed by using their high affinity for iron(III). The ternary complex chrome azurol S/iron(III)/hexadecyltrimethylammonium bromide, with an extinction coefficient of approximately 100,000 M-1 cm-1 at 630 nm, serves as an indicator. When a strong chelator removes the iron from the dye, its color turns from blue to orange. Because of the high sensitivity, determination of siderophores in solution and their characterization by paper electrophoresis chromatography can be performed directly on supernatants of culture fluids. The method is also applicable to agar plates. Orange halos around the colonies on blue agar are indicative of siderophore excretion. It was demonstrated with Escherichia coli strains that biosynthetic, transport, and regulatory mutations in the enterobactin system are clearly distinguishable. The method was successfully used to screen mutants in the iron uptake system of two Rhizobium meliloti strains, DM5 and 1021.
5,499 citations
TL;DR: The expression of the iron homeostatic machinery is subject to iron-dependent global control ensuring that iron acquisition, storage and consumption are geared to iron availability and that intracellular levels of free iron do not reach toxic levels.
Abstract: Iron is essential to virtually all organisms, but poses problems of toxicity and poor solubility. Bacteria have evolved various mechanisms to counter the problems imposed by their iron dependence, allowing them to achieve effective iron homeostasis under a range of iron regimes. Highly efficient iron acquisition systems are used to scavenge iron from the environment under iron-restricted conditions. In many cases, this involves the secretion and internalisation of extracellular ferric chelators called siderophores. Ferrous iron can also be directly imported by the G protein-like transporter, FeoB. For pathogens, host–iron complexes (transferrin, lactoferrin, haem, haemoglobin) are directly used as iron sources. Bacterial iron storage proteins (ferritin, bacterioferritin) provide intracellular iron reserves for use when external supplies are restricted, and iron detoxification proteins (Dps) are employed to protect the chromosome from iron-induced free radical damage. There is evidence that bacteria control their iron requirements in response to iron availability by down-regulating the expression of iron proteins during iron-restricted growth. And finally, the expression of the iron homeostatic machinery is subject to iron-dependent global control ensuring that iron acquisition, storage and consumption are geared to iron availability and that intracellular levels of free iron do not reach toxic levels.
2,291 citations
TL;DR: This finding represents a new component of the innate immune system and the acute phase response to infection and limits bacterial growth by sequestrating the iron-laden siderophore.
Abstract: Although iron is required to sustain life, its free concentration and metabolism have to be tightly regulated. This is achieved through a variety of iron-binding proteins including transferrin and ferritin. During infection, bacteria acquire much of their iron from the host by synthesizing siderophores that scavenge iron and transport it into the pathogen. We recently demonstrated that enterochelin, a bacterial catecholate siderophore, binds to the host protein lipocalin 2 (ref. 5). Here, we show that this event is pivotal in the innate immune response to bacterial infection. Upon encountering invading bacteria the Toll-like receptors on immune cells stimulate the transcription, translation and secretion of lipocalin 2; secreted lipocalin 2 then limits bacterial growth by sequestrating the iron-laden siderophore. Our finding represents a new component of the innate immune system and the acute phase response to infection.
1,622 citations
TL;DR: Overproduction of the siderophore and its transport system at low iron is in this species well established to be the result of negative transcriptional repression, but the detailed mechanism may be positive in other organisms.
Abstract: Siderophores are common products of aerobic and facultative anaerobic bacteria and of fungi. Elucidation of the molecular genetics of siderophore synthesis, and the regulation of this process by iron, has been facilitated by the fact that E. coli uses its own siderophores as well as those derived from other species, including fungi. Overproduction of the siderophore and its transport system at low iron is in this species well established to be the result of negative transcriptional repression, but the detailed mechanism may be positive in other organisms. Siderophores are transported across the double membrane envelope of E. coli via a gating mechanism linking the inner and outer membranes.
1,583 citations
TL;DR: Evidence is presented that PGPR exert their plant growth-promoting activity by depriving native microflora of iron by producing extracellular siderophores (microbial iron transport agents) which efficiently complex environmental iron, making it less available to certain nativemicroflora.
Abstract: Specific strains of the Pseudomonas fluorescens-putida group have recently been used as seed inoculants on crop plants to promote growth and increase yields. These pseudomonads, termed plant growth-promoting rhizobacteria (PGPR), rapidly colonize plant roots of potato, sugar beet and radish, and cause statistically significant yield increases up to 144% in field tests1–5. These results prompted us to investigate the mechanism by which plant growth was enhanced. A previous study indicated that PGPR increase plant growth by antagonism to potentially deleterious rhizoplane fungi and bacteria, but the nature of this antagonism was not determined6. We now present evidence that PGPR exert their plant growth-promoting activity by depriving native microflora of iron. PGPR produce extracellular siderophores (microbial iron transport agents)7 which efficiently complex environmental iron, making it less available to certain native microflora.
1,492 citations