Topic

# Signal

About: Signal is a research topic. Over the lifetime, 674211 publications have been published within this topic receiving 4570168 citations. The topic is also known as: electric signal.

##### Papers published on a yearly basis

##### Papers

More filters

•

01 Jan 1989

TL;DR: In this paper, the authors provide a thorough treatment of the fundamental theorems and properties of discrete-time linear systems, filtering, sampling, and discrete time Fourier analysis.

Abstract: For senior/graduate-level courses in Discrete-Time Signal Processing. THE definitive, authoritative text on DSP -- ideal for those with an introductory-level knowledge of signals and systems. Written by prominent, DSP pioneers, it provides thorough treatment of the fundamental theorems and properties of discrete-time linear systems, filtering, sampling, and discrete-time Fourier Analysis. By focusing on the general and universal concepts in discrete-time signal processing, it remains vital and relevant to the new challenges arising in the field --without limiting itself to specific technologies with relatively short life spans.

10,388 citations

01 Aug 2007

TL;DR: In this paper, a greedy algorithm called Orthogonal Matching Pursuit (OMP) was proposed to recover a signal with m nonzero entries in dimension 1 given O(m n d) random linear measurements of that signal.

Abstract: This report demonstrates theoretically and empirically that a greedy algorithm called
Orthogonal Matching Pursuit (OMP) can reliably recover a signal with m nonzero entries in dimension
d given O(mln d) random linear measurements of that signal. This is a massive improvement
over previous results, which require O(m2) measurements. The new results for OMP are comparable
with recent results for another approach called Basis Pursuit (BP). In some settings, the
OMP algorithm is faster and easier to implement, so it is an attractive alternative to BP for signal
recovery problems.

7,124 citations

••

TL;DR: The article consists of background material and of the basic problem formulation, and introduces spectral-based algorithmic solutions to the signal parameter estimation problem and contrast these suboptimal solutions to parametric methods.

Abstract: The quintessential goal of sensor array signal processing is the estimation of parameters by fusing temporal and spatial information, captured via sampling a wavefield with a set of judiciously placed antenna sensors. The wavefield is assumed to be generated by a finite number of emitters, and contains information about signal parameters characterizing the emitters. A review of the area of array processing is given. The focus is on parameter estimation methods, and many relevant problems are only briefly mentioned. We emphasize the relatively more recent subspace-based methods in relation to beamforming. The article consists of background material and of the basic problem formulation. Then we introduce spectral-based algorithmic solutions to the signal parameter estimation problem. We contrast these suboptimal solutions to parametric methods. Techniques derived from maximum likelihood principles as well as geometric arguments are covered. Later, a number of more specialized research topics are briefly reviewed. Then, we look at a number of real-world problems for which sensor array processing methods have been applied. We also include an example with real experimental data involving closely spaced emitters and highly correlated signals, as well as a manufacturing application example.

4,410 citations

•

01 Jan 1988

TL;DR: Signal Detection in Discrete Time and Signal Estimation in Continuous Time: Elements of Hypothesis Testing and Elements of Parameter Estimation.

Abstract: Preface I. Introduction II. Elements of Hypothesis Testing III. Signal Detection in Discrete Time IV. Elements of Parameter Estimation V. Elements of Signal Estimation VI. Signal Detection in Continuous Time VII. Signal Estimation in Continuous Time References Index

4,096 citations

••

Alcatel-Lucent

^{1}TL;DR: The theoretical and practical use of image techniques for simulating the impulse response between two points in a small rectangular room, when convolved with any desired input signal, simulates room reverberation of the input signal.

Abstract: Image methods are commonly used for the analysis of the acoustic properties of enclosures. In this paper we discuss the theoretical and practical use of image techniques for simulating, on a digital computer, the impulse response between two points in a small rectangular room. The resulting impulse response, when convolved with any desired input signal, such as speech, simulates room reverberation of the input signal. This technique is useful in signal processing or psychoacoustic studies. The entire process is carried out on a digital computer so that a wide range of room parameters can be studied with accurate control over the experimental conditions. A fortran implementation of this model has been included.

3,720 citations