scispace - formally typeset
Topic

Signal beam

About: Signal beam is a(n) research topic. Over the lifetime, 1881 publication(s) have been published within this topic receiving 20717 citation(s).


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a two-photon optical imaging experiment was performed based on the quantum nature of the signal and idler photon pairs produced in spontaneous parametric down-conversion, where an aperture placed in front of a fixed detector is illuminated by the signal beam through a convex lens.
Abstract: A two-photon optical imaging experiment was performed based on the quantum nature of the signal and idler photon pairs produced in spontaneous parametric down-conversion. An aperture placed in front of a fixed detector is illuminated by the signal beam through a convex lens. A sharp magnified image of the aperture is found in the coincidence counting rate when a mobile detector is scanned in the transverse plane of the idler beam at a specific distance in relation to the lens.

1,373 citations

Journal ArticleDOI
TL;DR: Observations of unusual diffraction and interference by two-photon correlation measurements by spontaneous parametric down-conversion are reported.
Abstract: Observations of unusual diffraction and interference by two-photon correlation measurements are reported. The signal and idler beams produced by spontaneous parametric down-conversion are sent in different directions, and detected by two distant pointlike photon counting detectors. A double slit or a single slit is inserted into the signal beam. Interference-diffraction patterns are observed in coincidences by scanning the detector in the idler beam.

648 citations

Journal ArticleDOI
TL;DR: By making the optimum joint measurement on the light received from the target region together with the retained spontaneous parametric down-conversion idler beam, the quantum-illumination system realizes a 6 dB advantage in the error-probability exponent over the optimum reception coherent-state system.
Abstract: An optical transmitter irradiates a target region containing a bright thermal-noise bath in which a low-reflectivity object might be embedded. The light received from this region is used to decide whether the object is present or absent. The performance achieved using a coherent-state transmitter is compared with that of a quantum-illumination transmitter, i.e., one that employs the signal beam obtained from spontaneous parametric down-conversion. By making the optimum joint measurement on the light received from the target region together with the retained spontaneous parametric down-conversion idler beam, the quantum-illumination system realizes a 6 dB advantage in the error-probability exponent over the optimum reception coherent-state system. This advantage accrues despite there being no entanglement between the light collected from the target region and the retained idler beam.

453 citations

Journal ArticleDOI
TL;DR: In this article, an additional phase shift is established between the photoinduced index modulation (phase volume hologram) and the incident fringe pattern, which is introduced by either moving the crystal or the interference fringes at a constant speed.
Abstract: The amplification of the input signal beam in two-wave mixing experiments with photorefractive Bi 12 SiO 20 crystals is achieved when an additional phase shift is established between the photoinduced index modulation (phase volume hologram) and the incident fringe pattern. This stationary phase shift is introduced by either moving the crystal or the interference fringes at a constant speed. The transferred intensity is measured versus the applied electric field, fringe spacing and crystal velocity. The crystallographic orientation and the relative displacement with respect to the applied electric field polarity determine the amplitude of the energy transfer. For the first time in this crystal, signal beam amplification is reached for an applied field E 0 > 8 kV cm −1 and a crystal or fringe displacement speed around 5 μm s −1 at the green line ( λ = 514 nm ) of an argon laser.

318 citations

PatentDOI
TL;DR: In this article, the authors present a method of recording successive holograms in a recording medium, using at least a fan of M waves along at least one first axis with a separation angle between adjacent waves and directing the fan of the M waves as a reference beam along a reference path onto the recording medium.
Abstract: The invention is embodied in a method of recording successive holograms in a recording medium, using at least a fan of M waves along at least a first axis with a separation angle between adjacent waves and directing the fan of M waves as a reference beam along a reference beam path onto the recording medium, successively modulating a wave with a succession of images to produce a succession of signal beams along a signal beam path lying at a propagation angle relative to the reference beam path so that the signal and reference beams intersect at a beam intersection lying within the medium, the beam intersection having a size corresponding to beam areas of the reference and signal beams, producing a succession of relative displacements in a direction parallel to the first axis between the recording medium and the beam intersection of the signal and reference beam paths in synchronism with the succession of signal beams, each of the displacements being less than the size of the intersection whereby to record successive holograms partially overlapped along a direction of the displacements.

258 citations

Network Information
Related Topics (5)
Resonator
76.5K papers, 1M citations
75% related
Optical fiber
167K papers, 1.8M citations
75% related
Raman scattering
38.4K papers, 902.6K citations
73% related
Plasmon
32.5K papers, 983.9K citations
73% related
Laser
353.1K papers, 4.3M citations
73% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202131
202040
201929
201844
201745
201645