Topic
Signal processing
About: Signal processing is a research topic. Over the lifetime, 73467 publications have been published within this topic receiving 983533 citations.
Papers published on a yearly basis
Papers
More filters
TL;DR: Both optimal and suboptimal Bayesian algorithms for nonlinear/non-Gaussian tracking problems, with a focus on particle filters are reviewed.
Abstract: Increasingly, for many application areas, it is becoming important to include elements of nonlinearity and non-Gaussianity in order to model accurately the underlying dynamics of a physical system. Moreover, it is typically crucial to process data on-line as it arrives, both from the point of view of storage costs as well as for rapid adaptation to changing signal characteristics. In this paper, we review both optimal and suboptimal Bayesian algorithms for nonlinear/non-Gaussian tracking problems, with a focus on particle filters. Particle filters are sequential Monte Carlo methods based on point mass (or "particle") representations of probability densities, which can be applied to any state-space model and which generalize the traditional Kalman filtering methods. Several variants of the particle filter such as SIR, ASIR, and RPF are introduced within a generic framework of the sequential importance sampling (SIS) algorithm. These are discussed and compared with the standard EKF through an illustrative example.
11,409 citations
Book•
01 Jan 1989
TL;DR: In this paper, the authors provide a thorough treatment of the fundamental theorems and properties of discrete-time linear systems, filtering, sampling, and discrete time Fourier analysis.
Abstract: For senior/graduate-level courses in Discrete-Time Signal Processing. THE definitive, authoritative text on DSP -- ideal for those with an introductory-level knowledge of signals and systems. Written by prominent, DSP pioneers, it provides thorough treatment of the fundamental theorems and properties of discrete-time linear systems, filtering, sampling, and discrete-time Fourier Analysis. By focusing on the general and universal concepts in discrete-time signal processing, it remains vital and relevant to the new challenges arising in the field --without limiting itself to specific technologies with relatively short life spans.
10,388 citations
TL;DR: Although discussed in the context of direction-of-arrival estimation, ESPRIT can be applied to a wide variety of problems including accurate detection and estimation of sinusoids in noise.
Abstract: An approach to the general problem of signal parameter estimation is described. The algorithm differs from its predecessor in that a total least-squares rather than a standard least-squares criterion is used. Although discussed in the context of direction-of-arrival estimation, ESPRIT can be applied to a wide variety of problems including accurate detection and estimation of sinusoids in noise. It exploits an underlying rotational invariance among signal subspaces induced by an array of sensors with a translational invariance structure. The technique, when applicable, manifests significant performance and computational advantages over previous algorithms such as MEM, Capon's MLM, and MUSIC. >
6,273 citations
Book•
01 Jan 1985TL;DR: This chapter discusses Adaptive Arrays and Adaptive Beamforming, as well as other Adaptive Algorithms and Structures, and discusses the Z-Transform in Adaptive Signal Processing.
Abstract: GENERAL INTRODUCTION. Adaptive Systems. The Adaptive Linear Combiner. THEORY OF ADAPTATION WITH STATIONARY SIGNALS. Properties of the Quadratic Performance Surface. Searching the Performance Surface. Gradient Estimation and Its Effects on Adaptation. ADAPTIVE ALGORITHMS AND STRUCTURES. The LMS Algorithm. The Z-Transform in Adaptive Signal Processing. Other Adaptive Algorithms and Structures. Adaptive Lattice Filters. APPLICATIONS. Adaptive Modeling and System Identification. Inverse Adaptive Modeling, Deconvolution, and Equalization. Adaptive Control Systems. Adaptive Interference Cancelling. Introduction to Adaptive Arrays and Adaptive Beamforming. Analysis of Adaptive Beamformers.
5,645 citations
TL;DR: A novel method for sparse signal recovery that in many situations outperforms ℓ1 minimization in the sense that substantially fewer measurements are needed for exact recovery.
Abstract: It is now well understood that (1) it is possible to reconstruct sparse signals exactly from what appear to be highly incomplete sets of linear measurements and (2) that this can be done by constrained l1 minimization. In this paper, we study a novel method for sparse signal recovery that in many situations outperforms l1 minimization in the sense that substantially fewer measurements are needed for exact recovery. The algorithm consists of solving a sequence of weighted l1-minimization problems where the weights used for the next iteration are computed from the value of the current solution. We present a series of experiments demonstrating the remarkable performance and broad applicability of this algorithm in the areas of sparse signal recovery, statistical estimation, error correction and image processing. Interestingly, superior gains are also achieved when our method is applied to recover signals with assumed near-sparsity in overcomplete representations—not by reweighting the l1 norm of the coefficient sequence as is common, but by reweighting the l1 norm of the transformed object. An immediate consequence is the possibility of highly efficient data acquisition protocols by improving on a technique known as Compressive Sensing.
4,869 citations