scispace - formally typeset
Search or ask a question

Showing papers on "Signal transduction published in 2006"


Journal ArticleDOI
19 Oct 2006-Nature
TL;DR: Treatments targeting basic mitochondrial processes, such as energy metabolism or free-radical generation, or specific interactions of disease-related proteins with mitochondria hold great promise in ageing-related neurodegenerative diseases.
Abstract: Many lines of evidence suggest that mitochondria have a central role in ageing-related neurodegenerative diseases. Mitochondria are critical regulators of cell death, a key feature of neurodegeneration. Mutations in mitochondrial DNA and oxidative stress both contribute to ageing, which is the greatest risk factor for neurodegenerative diseases. In all major examples of these diseases there is strong evidence that mitochondrial dysfunction occurs early and acts causally in disease pathogenesis. Moreover, an impressive number of disease-specific proteins interact with mitochondria. Thus, therapies targeting basic mitochondrial processes, such as energy metabolism or free-radical generation, or specific interactions of disease-related proteins with mitochondria, hold great promise.

5,368 citations


Journal ArticleDOI
03 Nov 2006-Cell
TL;DR: A general mass spectrometric technology is developed and applied for identification and quantitation of phosphorylation sites as a function of stimulus, time, and subcellular location to provide a missing link in a global, integrative view of cellular regulation.

3,404 citations


Journal ArticleDOI
TL;DR: Recent insights have shed light onto VEGFR signal transduction and the interplay between different V EGFRs and VEGF co-receptors in development, adult physiology and disease.
Abstract: Vascular endothelial growth-factor receptors (VEGFRs) regulate the cardiovascular system. VEGFR1 is required for the recruitment of haematopoietic precursors and migration of monocytes and macrophages, whereas VEGFR2 and VEGFR3 are essential for the functions of vascular endothelial and lymphendothelial cells, respectively. Recent insights have shed light onto VEGFR signal transduction and the interplay between different VEGFRs and VEGF co-receptors in development, adult physiology and disease.

2,894 citations


Journal ArticleDOI
TL;DR: Although the intracellular transduction of the Notch signal is remarkably simple, with no secondary messengers, this pathway functions in an enormous diversity of developmental processes and its dysfunction is implicated in many cancers.
Abstract: A small number of signalling pathways are used iteratively to regulate cell fates, cell proliferation and cell death in development. Notch is the receptor in one such pathway, and is unusual in that most of its ligands are also transmembrane proteins; therefore signalling is restricted to neighbouring cells. Although the intracellular transduction of the Notch signal is remarkably simple, with no secondary messengers, this pathway functions in an enormous diversity of developmental processes and its dysfunction is implicated in many cancers.

2,450 citations


Journal ArticleDOI
13 Apr 2006-Nature
TL;DR: A genomic analysis of two cellular models of insulin resistance, one induced by treatment with the cytokine tumour-necrosis factor-α and the other with the glucocorticoid dexamethasone, suggests that reactive oxygen species levels are increased in both models, and increased ROS levels are an important trigger for insulin resistance in numerous settings.
Abstract: Insulin resistance is a cardinal feature of type 2 diabetes and is characteristic of a wide range of other clinical and experimental settings. Little is known about why insulin resistance occurs in so many contexts. Do the various insults that trigger insulin resistance act through a common mechanism? Or, as has been suggested, do they use distinct cellular pathways? Here we report a genomic analysis of two cellular models of insulin resistance, one induced by treatment with the cytokine tumour-necrosis factor-alpha and the other with the glucocorticoid dexamethasone. Gene expression analysis suggests that reactive oxygen species (ROS) levels are increased in both models, and we confirmed this through measures of cellular redox state. ROS have previously been proposed to be involved in insulin resistance, although evidence for a causal role has been scant. We tested this hypothesis in cell culture using six treatments designed to alter ROS levels, including two small molecules and four transgenes; all ameliorated insulin resistance to varying degrees. One of these treatments was tested in obese, insulin-resistant mice and was shown to improve insulin sensitivity and glucose homeostasis. Together, our findings suggest that increased ROS levels are an important trigger for insulin resistance in numerous settings.

2,292 citations


Journal ArticleDOI
TL;DR: The role of the molecules that are activated during the UPR is examined in order to identify the molecular switch from the adaptive phase to apoptosis and how the activation of these molecules leads to the commitment of death and the mechanisms that are responsible for the final demise of the cell.
Abstract: The efficient functioning of the endoplasmic reticulum (ER) is essential for most cellular activities and survival. Conditions that interfere with ER function lead to the accumulation and aggregation of unfolded proteins. ER transmembrane receptors detect the onset of ER stress and initiate the unfolded protein response (UPR) to restore normal ER function. If the stress is prolonged, or the adaptive response fails, apoptotic cell death ensues. Many studies have focused on how this failure initiates apoptosis, as ER stress-induced apoptosis is implicated in the pathophysiology of several neurodegenerative and cardiovascular diseases. In this review, we examine the role of the molecules that are activated during the UPR in order to identify the molecular switch from the adaptive phase to apoptosis. We discuss how the activation of these molecules leads to the commitment of death and the mechanisms that are responsible for the final demise of the cell.

2,128 citations


Journal ArticleDOI
30 Oct 2006-Oncogene
TL;DR: An overview of the discovery and current status of NF-κB as a research topic is provided and the organization and focus of articles included in the following reviews are described, as well as likely future areas of research interest on NF-σB.
Abstract: This article serves as an introduction to the collection of reviews on nuclear factor-kappaB (NF-kappaB). It provides an overview of the discovery and current status of NF-kappaB as a research topic. Described are the structures, activities and regulation of the proteins in the NF-kappaB family of transcription factors. NF-kappaB signaling is primarily regulated by inhibitor kappaB (IkappaB) proteins and the IkappaB kinase complex through two major pathways: the canonical and non-canonical NF-kappaB pathways. The organization and focus of articles included in the following reviews are described, as well as likely future areas of research interest on NF-kappaB.

2,046 citations


Journal ArticleDOI
25 May 2006-Nature
TL;DR: The preponderance of mutations in these interconnected pathways suggests that the loss of growth-control checkpoints and promotion of cell survival in nutrient-limited conditions may be an obligate event in tumorigenesis.
Abstract: All eukaryotic cells coordinate cell growth with the availability of nutrients in their environment. The mTOR protein kinase has emerged as a critical growth-control node, receiving stimulatory signals from Ras and phosphatidylinositol-3-OH kinase (PI(3)K) downstream from growth factors, as well as nutrient inputs in the form of amino-acid, glucose and oxygen availability. Notably, components of the Ras and PI(3)K signalling pathways are mutated in most human cancers. The preponderance of mutations in these interconnected pathways suggests that the loss of growth-control checkpoints and promotion of cell survival in nutrient-limited conditions may be an obligate event in tumorigenesis.

1,937 citations


Journal ArticleDOI
30 Jun 2006-Science
TL;DR: Once considered lethal to cells, reactive oxygen species are now known to be involved in redox signaling pathways that may contribute to normal cell function as well as disease progression.
Abstract: Once considered lethal to cells, reactive oxygen species are now known to be involved in redox signaling pathways that may contribute to normal cell function as well as disease progression.

1,892 citations


Journal ArticleDOI
26 Jan 2006-Nature
TL;DR: It is shown that the administration of BAs to mice increases energy expenditure in brown adipose tissue, preventing obesity and resistance to insulin, and indicates that BAs might be able to function beyond the control of BA homeostasis as general metabolic integrators.
Abstract: While bile acids (BAs) have long been known to be essential in dietary lipid absorption and cholesterol catabolism, in recent years an important role for BAs as signalling molecules has emerged. BAs activate mitogen-activated protein kinase pathways, are ligands for the G-protein-coupled receptor (GPCR) TGR5 and activate nuclear hormone receptors such as farnesoid X receptor alpha (FXR-alpha; NR1H4). FXR-alpha regulates the enterohepatic recycling and biosynthesis of BAs by controlling the expression of genes such as the short heterodimer partner (SHP; NR0B2) that inhibits the activity of other nuclear receptors. The FXR-alpha-mediated SHP induction also underlies the downregulation of the hepatic fatty acid and triglyceride biosynthesis and very-low-density lipoprotein production mediated by sterol-regulatory-element-binding protein 1c. This indicates that BAs might be able to function beyond the control of BA homeostasis as general metabolic integrators. Here we show that the administration of BAs to mice increases energy expenditure in brown adipose tissue, preventing obesity and resistance to insulin. This novel metabolic effect of BAs is critically dependent on induction of the cyclic-AMP-dependent thyroid hormone activating enzyme type 2 iodothyronine deiodinase (D2) because it is lost in D2-/- mice. Treatment of brown adipocytes and human skeletal myocytes with BA increases D2 activity and oxygen consumption. These effects are independent of FXR-alpha, and instead are mediated by increased cAMP production that stems from the binding of BAs with the G-protein-coupled receptor TGR5. In both rodents and humans, the most thermogenically important tissues are specifically targeted by this mechanism because they coexpress D2 and TGR5. The BA-TGR5-cAMP-D2 signalling pathway is therefore a crucial mechanism for fine-tuning energy homeostasis that can be targeted to improve metabolic control.

1,852 citations


Journal ArticleDOI
14 Jul 2006-Cell
TL;DR: expression of TIGAR may modulate the apoptotic response to p53, allowing survival in the face of mild or transient stress signals that may be reversed or repaired, and the decrease of intracellular ROS levels in response to TIGar may also play a role in the ability of p53 to protect from the accumulation of genomic damage.

Journal ArticleDOI
17 Jan 2006-Gene
TL;DR: The growth and the survival of carcinoma cells appear to be sustained by a network of receptors/ligands of the ErbB family, which is important for therapeutic approaches, since the response to anti-EGFR agents might depend on the total level of expression ofErbB receptors and ligands in tumor cells.

Journal ArticleDOI
21 Apr 2006-Science
TL;DR: It is shown that a flagellin-derived peptide induces a plant microRNA (miRNA) that negatively regulates messenger RNAs for the F-box auxin receptors TIR1, AFB2, and AFB3, implicating auxin in disease susceptibility and miRNA-mediated suppression of auxin signaling in resistance.
Abstract: Plants and animals activate defenses after perceiving pathogen-associated molecular patterns (PAMPs) such as bacterial flagellin. In Arabidopsis, perception of flagellin increases resistance to the bacterium Pseudomonas syringae, although the molecular mechanisms involved remain elusive. Here, we show that a flagellin-derived peptide induces a plant microRNA (miRNA) that negatively regulates messenger RNAs for the F-box auxin receptors TIR1, AFB2, and AFB3. Repression of auxin signaling restricts P. syringae growth, implicating auxin in disease susceptibility and miRNA-mediated suppression of auxin signaling in resistance.

Journal ArticleDOI
TL;DR: It is found that the autophagy system is activated as a novel signaling pathway in response to ER stress and played important roles in cell survival after ER stress.
Abstract: Eukaryotic cells deal with accumulation of unfolded proteins in the endoplasmic reticulum (ER) by the unfolded protein response, involving the induction of molecular chaperones, translational attenuation, and ER-associated degradation, to prevent cell death. Here, we found that the autophagy system is activated as a novel signaling pathway in response to ER stress. Treatment of SK-N-SH neuroblastoma cells with ER stressors markedly induced the formation of autophagosomes, which were recognized at the ultrastructural level. The formation of green fluorescent protein (GFP)-LC3-labeled structures (GFP-LC3 “dots”), representing autophagosomes, was extensively induced in cells exposed to ER stress with conversion from LC3-I to LC3-II. In IRE1-deficient cells or cells treated with c-Jun N-terminal kinase (JNK) inhibitor, the autophagy induced by ER stress was inhibited, indicating that the IRE1-JNK pathway is required for autophagy activation after ER stress. In contrast, PERK-deficient cells and ATF6 knockdown cells showed that autophagy was induced after ER stress in a manner similar to the wild-type cells. Disturbance of autophagy rendered cells vulnerable to ER stress, suggesting that autophagy plays important roles in cell survival after ER stress.

Journal ArticleDOI
TL;DR: Members of the Toll-like receptor family have emerged as key sensors that recognize viral components such as nucleic acids and induce type I interferon responses via distinct signaling pathways.
Abstract: Induction of the antiviral innate immune response depends on recognition of viral components by host pattern-recognition receptors. Members of the Toll-like receptor family have emerged as key sensors that recognize viral components such as nucleic acids. Toll-like receptor signaling results in the production of type I interferon and inflammatory cytokines and leads to dendritic cell maturation and establishment of antiviral immunity. Cells also express cytoplasmic RNA helicases that function as alternative pattern-recognition receptors through recognition of double-stranded RNA produced during virus replication. These two classes of pattern-recognition receptor molecules are expressed in different intracellular compartments and induce type I interferon responses via distinct signaling pathways.

Journal ArticleDOI
07 Dec 2006-Nature
TL;DR: It is shown that a previously undescribed receptor conversion by Klotho, a senescence-related molecule, generates the FGF23 receptor, and insights into the diversity and specificity of interactions between FGF and FGF receptors are provided.
Abstract: FGF23 is a unique member of the fibroblast growth factor (FGF) family because it acts as a hormone that derives from bone and regulates kidney functions, whereas most other family members are thought to regulate various cell functions at a local level. The renotropic activity of circulating FGF23 indicates the possible presence of an FGF23-specific receptor in the kidney. Here we show that a previously undescribed receptor conversion by Klotho, a senescence-related molecule, generates the FGF23 receptor. Using a renal homogenate, we found that Klotho binds to FGF23. Forced expression of Klotho enabled the high-affinity binding of FGF23 to the cell surface and restored the ability of a renal cell line to respond to FGF23 treatment. Moreover, FGF23 incompetence was induced by injecting wild-type mice with an anti-Klotho monoclonal antibody. Thus, Klotho is essential for endogenous FGF23 function. Because Klotho alone seemed to be incapable of intracellular signalling, we searched for other components of the FGF23 receptor and found FGFR1(IIIc), which was directly converted by Klotho into the FGF23 receptor. Thus, the concerted action of Klotho and FGFR1(IIIc) reconstitutes the FGF23 receptor. These findings provide insights into the diversity and specificity of interactions between FGF and FGF receptors.

Journal ArticleDOI
TL;DR: The interferon-regulatory factor family of transcription factors was initially found to be involved in the induction of genes that encode type I interferons but has now been shown to have functionally diverse roles in the regulation of the immune system.
Abstract: The interferon-regulatory factor (IRF) family of transcription factors was initially found to be involved in the induction of genes that encode type I interferons. IRFs have now been shown to have functionally diverse roles in the regulation of the immune system. Recently, the crucial involvement of IRFs in innate and adaptive immune responses has been gaining much attention, particularly with the discovery of their role in immunoregulation by Toll-like receptors and other pattern-recognition receptors.

Journal ArticleDOI
TL;DR: Pannexin‐1, a recently described mammalian protein that functions as a hemichannel when ectopically expressed, is identified as this dye‐uptake pathway and signalling through pannexin•1 is required for processing of caspase‐1 and release of mature IL‐1β induced by P2X7 receptor activation.
Abstract: P2X 7 receptors are ATP‐gated cation channels; their activation in macrophage also leads to rapid opening of a membrane pore permeable to dyes such as ethidium, and to release of the pro‐inflammatory cytokine, interleukin‐1β (IL‐1β). It has not been known what this dye‐uptake path is, or whether it is involved in downstream signalling to IL‐1β release. Here, we identify pannexin‐1, a recently described mammalian protein that functions as a hemichannel when ectopically expressed, as this dye‐uptake pathway and show that signalling through pannexin‐1 is required for processing of caspase‐1 and release of mature IL‐1β induced by P2X 7 receptor activation.

Journal ArticleDOI
TL;DR: It is shown that Klotho protein directly binds to multiple FGF receptors (FGFRs) and significantly enhanced the ability of FGF23 to induce phosphorylation of F GF receptor substrate and ERK in various types of cells.

Journal ArticleDOI
TL;DR: Understanding of these processes may provide a full picture of the distinct, and even opposing cellular processes that are regulated by the ERK cascade, which is described in the current review.
Abstract: The extracellular signal-regulated kinase (ERK) cascade is a central pathway that transmits signals from many extracellular agents to regulate cellular processes such as proliferation, differentiation and cell cycle progression. The signaling via the ERK cascade is mediated by sequential phosphorylation and activation of protein kinases in the different tiers of the cascade. Although the main core phosphorylation chain of the cascade includes Raf kinases, MEK1/2, ERK1/2 (ERKs) and RSKs, other alternatively spliced forms and distinct components exist in the different tiers, and participate in ERK signaling under specific conditions. These components enhance the complexity of the ERK cascade and thereby, enable the wide variety of functions that are regulated by it. Another factor that is important for the dissemination of ERKs' signals is the multiplicity of the cascade's substrates, which include transcription factors, protein kinases and phosphatases, cytoskeletal elements, regulators of apoptosis, and a variety of other signaling-related molecules. About 160 substrates have already been discovered for ERKs, and the list of these substrates, as well as the function and mechanism of activation of representative substrates, are described in the current review. Many of these substrates are localized in the nucleus, and seem to participate in the regulation of transcription upon stimulation. However, other substrates are found in the cytosol as well as in other cellular organelles, and those are responsible for processes such as translation, mitosis and apoptosis. Understanding of these processes may provide a full picture of the distinct, and even opposing cellular processes that are regulated by the ERK cascade.

Journal ArticleDOI
TL;DR: This review describes the functions of and regulatory mechanisms controlling the activity of a family of kinases that are instrumental for activation of the host defense system.
Abstract: Members of the nuclear factor kappa B (NF-kappaB) family of dimeric transcription factors (TFs) regulate expression of a large number of genes involved in immune responses, inflammation, cell survival, and cancer. NF-kappaB TFs are rapidly activated in response to various stimuli, including cytokines, infectious agents, and radiation-induced DNA double-strand breaks. In nonstimulated cells, some NF-kappaB TFs are bound to inhibitory IkappaB proteins and are thereby sequestered in the cytoplasm. Activation leads to phosphorylation of IkappaB proteins and their subsequent recognition by ubiquitinating enzymes. The resulting proteasomal degradation of IkappaB proteins liberates IkappaB-bound NF-kappaB TFs, which translocate to the nucleus to drive expression of target genes. Two protein kinases with a high degree of sequence similarity, IKKalpha and IKKbeta, mediate phosphorylation of IkappaB proteins and represent a convergence point for most signal transduction pathways leading to NF-kappaB activation. Most of the IKKalpha and IKKbeta molecules in the cell are part of IKK complexes that also contain a regulatory subunit called IKKgamma or NEMO. Despite extensive sequence similarity, IKKalpha and IKKbeta have largely distinct functions, due to their different substrate specificities and modes of regulation. IKKbeta (and IKKgamma) are essential for rapid NF-kappaB activation by proinflammatory signaling cascades, such as those triggered by tumor necrosis factor alpha (TNFalpha) or lipopolysaccharide (LPS). In contrast, IKKalpha functions in the activation of a specific form of NF-kappaB in response to a subset of TNF family members and may also serve to attenuate IKKbeta-driven NF-kappaB activation. Moreover, IKKalpha is involved in keratinocyte differentiation, but this function is independent of its kinase activity. Several years ago, two protein kinases, one called IKKepsilon or IKK-i and one variously named TBK1 (TANK-binding kinase), NAK (NF-kappaB-activated kinase), or T2K (TRAF2-associated kinase), were identified that exhibit structural similarity to IKKalpha and IKKbeta. These protein kinases are important for the activation of interferon response factor 3 (IRF3) and IRF7, TFs that play key roles in the induction of type I interferon (IFN-I). Together, the IKKs and IKK-related kinases are instrumental for activation of the host defense system. This Review focuses on the functions of IKK and IKK-related kinases and the molecular mechanisms that regulate their activities.

Journal ArticleDOI
TL;DR: There have been many advances in knowledge about different aspects of P2Y receptor signaling since the last review published by the International Union of Pharmacology subcommittee, and more receptor subtypes have been cloned and characterized and most orphan receptors deorphanized, so that it is now possible to provide a basis for a future subdivision of P 2Y receptor sub types.
Abstract: There have been many advances in our knowledge about different aspects of P2Y receptor signaling since the last review published by our International Union of Pharmacology subcommittee. More receptor subtypes have been cloned and characterized and most orphan receptors deorphanized, so that it is now possible to provide a basis for a future subdivision of P2Y receptor subtypes. More is known about the functional elements of the P2Y receptor molecules and the signaling pathways involved, including interactions with ion channels. There have been substantial developments in the design of selective agonists and antagonists to some of the P2Y receptor subtypes. There are new findings about the mechanisms underlying nucleotide release and ectoenzymatic nucleotide breakdown. Interactions between P2Y receptors and receptors to other signaling molecules have been explored as well as P2Y-mediated control of gene transcription. The distribution and roles of P2Y receptor subtypes in many different cell types are better understood and P2Y receptor-related compounds are being explored for therapeutic purposes. These and other advances are discussed in the present review.

Journal ArticleDOI
12 May 2006-Science
TL;DR: It is demonstrated that mTOR signaling plays a role in the brain mechanisms that respond to nutrient availability, regulating energy balance, and that hypothalamic activity is directly tied to the regulation of energy intake.
Abstract: The mammalian Target of Rapamycin (mTOR) protein is a serine-threonine kinase that regulates cell-cycle progression and growth by sensing changes in energy status. We demonstrated that mTOR signaling plays a role in the brain mechanisms that respond to nutrient availability, regulating energy balance. In the rat, mTOR signaling is controlled by energy status in specific regions of the hypothalamus and colocalizes with neuropeptide Y and proopiomelanocortin neurons in the arcuate nucleus. Central administration of leucine increases hypothalamic mTOR signaling and decreases food intake and body weight. The hormone leptin increases hypothalamic mTOR activity, and the inhibition of mTOR signaling blunts leptin's anorectic effect. Thus, mTOR is a cellular fuel sensor whose hypothalamic activity is directly tied to the regulation of energy intake.

Journal ArticleDOI
06 Jul 2006-Nature
TL;DR: It is apparent that Toll-like receptors, a class of membrane receptors that sense extracellular microbes and trigger anti-pathogen signalling cascades, are likely to have critical roles in health and disease.
Abstract: The innate immune system relies on its capacity to rapidly detect invading pathogenic microbes as foreign and eliminate them. Indeed, Toll-like receptors are a class of membrane receptors that sense extracellular microbes and trigger anti-pathogen signalling cascades. Recently, intracellular microbial sensors have also been identified, including NOD-like receptors and the helicase-domain-containing antiviral proteins RIG-I and MDA5. Some of these cytoplasmic molecules sense microbial, as well as non-microbial, danger signals, but the mechanisms of recognition used by these sensors remain poorly understood. Nonetheless, it is apparent that these proteins are likely to have critical roles in health and disease.

01 Jan 2006
TL;DR: Activation of JAK-STAT signaling via MPLW515L is an important pathogenetic event in patients with JAK2V617F-negative MF, including extramedullary hematopoiesis, splenomegaly, and megakaryocytic proliferation.
Abstract: Background The JAK2V617F allele has recently been identified in patients with polycythemia vera (PV), essential thrombocytosis (ET), and myelofibrosis with myeloid metaplasia (MF). Subsequent analysis has shown that constitutive activation of the JAK-STAT signal transduction pathway is an important pathogenetic event in these patients, and that enzymatic inhibition of JAK2V617F may be of therapeutic benefit in this context. However, a significant proportion of patients with ET or MF are JAK2V617F-negative. We hypothesized that activation of the JAK-STAT pathway might also occur as a consequence of activating mutations in certain hematopoietic-specific cytokine receptors, including the erythropoietin receptor (EPOR), the thrombopoietin receptor (MPL), or the granulocyte-colony stimulating factor receptor (GCSFR).

Journal ArticleDOI
TL;DR: The authors showed that salmonella-infected and lipopolysaccharide-tolerant macrophages were deficient in activation of caspase-1 and in interleukin 1beta secretion, although transcription factor NF-kappaB-dependent production of the chemokine MCP-1 was unimpaired.
Abstract: Gram-negative bacteria that replicate in the cytosol of mammalian macrophages can activate a signaling pathway leading to caspase-1 cleavage and secretion of interleukin 1beta, a powerful host response factor. Ipaf, a cytosolic pattern-recognition receptor in the family of nucleotide-binding oligomerization domain-leucine-rich repeat proteins, is critical in such a response to salmonella infection, but the mechanism of how Ipaf is activated by the bacterium remains poorly understood. Here we demonstrate that salmonella strains either lacking flagellin or expressing mutant flagellin were deficient in activation of caspase-1 and in interleukin 1beta secretion, although transcription factor NF-kappaB-dependent production of interleukin 6 or the chemokine MCP-1 was unimpaired. Delivery of flagellin to the macrophage cytosol induced Ipaf-dependent activation of caspase-1 that was independent of Toll-like receptor 5, required for recognition of extracellular flagellin. In macrophages made tolerant by previous exposure to lipopolysaccharide, which abrogates activation of NF-kappaB and mitogen-activated protein kinases, salmonella infection still activated caspase-1. Thus, detection of flagellin through Ipaf induces caspase-1 activation independently of Toll-like receptor 5 in salmonella-infected and lipopolysaccharide-tolerized macrophages.

Journal ArticleDOI
TL;DR: This work has generated excitement regarding the potential use of adenosine-receptor-based therapies in the treatment of infection, autoimmunity, ischaemia and degenerative diseases.
Abstract: Adenosine is a key endogenous molecule that regulates tissue function by activating four G-protein-coupled adenosine receptors: A1, A2A, A2B and A3. Cells of the immune system express these receptors and are responsive to the modulatory effects of adenosine in an inflammatory environment. Animal models of asthma, ischaemia, arthritis, sepsis, inflammatory bowel disease and wound healing have helped to elucidate the regulatory roles of the various adenosine receptors in dictating the development and progression of disease. This recent heightened awareness of the role of adenosine in the control of immune and inflammatory systems has generated excitement regarding the potential use of adenosine-receptor-based therapies in the treatment of infection, autoimmunity, ischaemia and degenerative diseases.

Journal ArticleDOI
15 Jun 2006-Blood
TL;DR: It is found that MM cells have a lower threshold for PI-induced UPR induction and ER stress-induced apoptosis because they constitutively express ER stress survival factors to function as secretory cells.

Journal ArticleDOI
TL;DR: A structural analysis of binding modes of known human type II inhibitors are presented and it is demonstrated that they conform to a pharmacophore model that is currently being used to design a new generation of kinase inhibitors.
Abstract: The majority of kinase inhibitors that have been developed so far—known as type I inhibitors—target the ATP binding site of the kinase in its active conformation, in which the activation loop is phosphorylated. Recently, crystal structures of inhibitors such as imatinib (STI571), BIRB796 and sorafenib (BAY43-9006)—known as type II inhibitors—have revealed a new binding mode that exploits an additional binding site immediately adjacent to the region occupied by ATP. This pocket is made accessible by an activation-loop rearrangement that is characteristic of kinases in an inactive conformation. Here, we present a structural analysis of binding modes of known human type II inhibitors and demonstrate that they conform to a pharmacophore model that is currently being used to design a new generation of kinase inhibitors.

Journal ArticleDOI
TL;DR: The VEGF/VPF ligands and receptors are crucial regulators of vasculogenesis, angiogenesis, lymphangiogenesis and vascular permeability in vertebrates and mapping the signaling system of these important receptors may provide the knowledge necessary to suppress specific signaling pathways in major human diseases.