scispace - formally typeset
Search or ask a question

Showing papers on "Signal transduction published in 2022"


Journal ArticleDOI
TL;DR: In this article , the authors discuss promising developments and how they might be used to increase plant resilience to environmental stress, including the identification of ROS receptors and key regulatory hubs that connect ROS signalling with other important stress-response signal transduction pathways and hormones, as well as new roles for ROS in organelle-to-organelle and cell-tocell signalling.
Abstract: Reactive oxygen species (ROS) are key signalling molecules that enable cells to rapidly respond to different stimuli. In plants, ROS play a crucial role in abiotic and biotic stress sensing, integration of different environmental signals and activation of stress-response networks, thus contributing to the establishment of defence mechanisms and plant resilience. Recent advances in the study of ROS signalling in plants include the identification of ROS receptors and key regulatory hubs that connect ROS signalling with other important stress-response signal transduction pathways and hormones, as well as new roles for ROS in organelle-to-organelle and cell-to-cell signalling. Our understanding of how ROS are regulated in cells by balancing production, scavenging and transport has also increased. In this Review, we discuss these promising developments and how they might be used to increase plant resilience to environmental stress.

247 citations


Journal ArticleDOI
TL;DR: In this article , a review of the history, architecture, regulatory mechanisms, contributions to physiological development, related diseases, and therapeutic applications of the NOTCH pathway is presented. But, the authors emphasize that the outcomes of NOTCH signaling are changeable and highly dependent on context.
Abstract: The NOTCH gene was identified approximately 110 years ago. Classical studies have revealed that NOTCH signaling is an evolutionarily conserved pathway. NOTCH receptors undergo three cleavages and translocate into the nucleus to regulate the transcription of target genes. NOTCH signaling deeply participates in the development and homeostasis of multiple tissues and organs, the aberration of which results in cancerous and noncancerous diseases. However, recent studies indicate that the outcomes of NOTCH signaling are changeable and highly dependent on context. In terms of cancers, NOTCH signaling can both promote and inhibit tumor development in various types of cancer. The overall performance of NOTCH-targeted therapies in clinical trials has failed to meet expectations. Additionally, NOTCH mutation has been proposed as a predictive biomarker for immune checkpoint blockade therapy in many cancers. Collectively, the NOTCH pathway needs to be integrally assessed with new perspectives to inspire discoveries and applications. In this review, we focus on both classical and the latest findings related to NOTCH signaling to illustrate the history, architecture, regulatory mechanisms, contributions to physiological development, related diseases, and therapeutic applications of the NOTCH pathway. The contributions of NOTCH signaling to the tumor immune microenvironment and cancer immunotherapy are also highlighted. We hope this review will help not only beginners but also experts to systematically and thoroughly understand the NOTCH signaling pathway.

108 citations


Journal ArticleDOI
TL;DR: In this article , the role of PI3K-Akt-mTOR signaling pathway in different cancer conditions and the importance of natural products targeting the PI3k-At-mtor signaling pathway is discussed.

101 citations


Journal ArticleDOI
TL;DR: In this paper , the authors summarize the knowledge on cellular participants and key inflammatory signaling pathways in atherosclerosis, and discuss the preclinical studies targeting these key pathways, the clinical trials that are going to target some of these processes.
Abstract: Atherosclerosis is a chronic inflammatory vascular disease driven by traditional and nontraditional risk factors. Genome-wide association combined with clonal lineage tracing and clinical trials have demonstrated that innate and adaptive immune responses can promote or quell atherosclerosis. Several signaling pathways, that are associated with the inflammatory response, have been implicated within atherosclerosis such as NLRP3 inflammasome, toll-like receptors, proprotein convertase subtilisin/kexin type 9, Notch and Wnt signaling pathways, which are of importance for atherosclerosis development and regression. Targeting inflammatory pathways, especially the NLRP3 inflammasome pathway and its regulated inflammatory cytokine interleukin-1β, could represent an attractive new route for the treatment of atherosclerotic diseases. Herein, we summarize the knowledge on cellular participants and key inflammatory signaling pathways in atherosclerosis, and discuss the preclinical studies targeting these key pathways for atherosclerosis, the clinical trials that are going to target some of these processes, and the effects of quelling inflammation and atherosclerosis in the clinic.

89 citations


Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors studied the Wnt pathway and analyzed the relevant targets when drugs or inhibitors act on the pathway, to clarify the medication ideas of drugs/ inhibitors for the treatment of diseases, especially colorectal cancer.
Abstract: Abstract Background The Wnt signaling pathway is a complex network of protein interactions that functions most commonly in embryonic development and cancer, but is also involved in normal physiological processes in adults. The canonical Wnt signaling pathway regulates cell pluripotency and determines the differentiation fate of cells during development. The canonical Wnt signaling pathway (also known as the Wnt/β-catenin signaling pathway) is a recognized driver of colon cancer and one of the most representative signaling pathways. As a functional effector molecule of Wnt signaling, the modification and degradation of β-catenin are key events in the Wnt signaling pathway and the development and progression of colon cancer. Therefore, the Wnt signaling pathway plays an important role in the pathogenesis of diseases, especially the pathogenesis of colorectal cancer (CRC). Objective Inhibit the Wnt signaling pathway to explore the therapeutic targets of colorectal cancer. Methods Based on studying the Wnt pathway, master the biochemical processes related to the Wnt pathway, and analyze the relevant targets when drugs or inhibitors act on the Wnt pathway, to clarify the medication ideas of drugs or inhibitors for the treatment of diseases, especially colorectal cancer. Results Wnt signaling pathways include: Wnt/β-catenin or canonical Wnt signaling pathway, planar cell polarity (Wnt-PCP) pathway and Wnt-Ca 2+ signaling pathway. The Wnt signaling pathway is closely related to cancer cell proliferation, stemness, apoptosis, autophagy, metabolism, inflammation and immunization, microenvironment, resistance, ion channel, heterogeneity, EMT/migration/invasion/metastasis. Drugs/phytochemicals and molecular preparations for the Wnt pathway of CRC treatment have now been developed. Wnt inhibitors are also commonly used clinically for the treatment of CRC. Conclusion The development of drugs/phytochemicals and molecular inhibitors targeting the Wnt pathway can effectively treat colorectal cancer clinically.

88 citations


Journal ArticleDOI
TL;DR: In this article , the authors summarize the therapeutic strategies for myocardial infarction (MI) by regulating these associated pathways, which contribute to inhibiting cardiomyocytes death, attenuating inflammation, enhancing angiogenesis, etc.
Abstract: Although the treatment of myocardial infarction (MI) has improved considerably, it is still a worldwide disease with high morbidity and high mortality. Whilst there is still a long way to go for discovering ideal treatments, therapeutic strategies committed to cardioprotection and cardiac repair following cardiac ischemia are emerging. Evidence of pathological characteristics in MI illustrates cell signaling pathways that participate in the survival, proliferation, apoptosis, autophagy of cardiomyocytes, endothelial cells, fibroblasts, monocytes, and stem cells. These signaling pathways include the key players in inflammation response, e.g., NLRP3/caspase-1 and TLR4/MyD88/NF-κB; the crucial mediators in oxidative stress and apoptosis, for instance, Notch, Hippo/YAP, RhoA/ROCK, Nrf2/HO-1, and Sonic hedgehog; the controller of myocardial fibrosis such as TGF-β/SMADs and Wnt/β-catenin; and the main regulator of angiogenesis, PI3K/Akt, MAPK, JAK/STAT, Sonic hedgehog, etc. Since signaling pathways play an important role in administering the process of MI, aiming at targeting these aberrant signaling pathways and improving the pathological manifestations in MI is indispensable and promising. Hence, drug therapy, gene therapy, protein therapy, cell therapy, and exosome therapy have been emerging and are known as novel therapies. In this review, we summarize the therapeutic strategies for MI by regulating these associated pathways, which contribute to inhibiting cardiomyocytes death, attenuating inflammation, enhancing angiogenesis, etc. so as to repair and re-functionalize damaged hearts.

81 citations


Journal ArticleDOI
TL;DR: This work reviews advances in the understanding of this key pathway, from Wnt protein production and secretion to relay of the signal in the cytoplasm of the receiving cell, as well as endogenous and synthetic modulators of its activity.
Abstract: The Wnt pathway is central to a host of developmental and disease-related processes. The remarkable conservation of this intercellular signaling cascade throughout metazoan lineages indicates that it coevolved with multicellularity to regulate the generation and spatial arrangement of distinct cell types. By regulating cell fate specification, mitotic activity, and cell polarity, Wnt signaling orchestrates development and tissue homeostasis, and its dysregulation is implicated in developmental defects, cancer, and degenerative disorders. We review advances in our understanding of this key pathway, from Wnt protein production and secretion to relay of the signal in the cytoplasm of the receiving cell. We discuss the evolutionary history of this pathway as well as endogenous and synthetic modulators of its activity. Finally, we highlight remaining gaps in our knowledge of Wnt signal transduction and avenues for future research. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

75 citations


Journal ArticleDOI
TL;DR: In this paper , the authors provide a comprehensive analysis by focusing on how lipid metabolism impacts the initiation, propagation, and termination of phospholipid peroxidation, and how multiple signal transduction pathways communicate with ferroptosis via modulating lipid metabolism.

71 citations


Journal ArticleDOI
TL;DR: The mechanisms that lead to cognitive impairment associated with COVID‐19 are not well understood and further research is needed to better understand these mechanisms and their role in clinical practice.
Abstract: The mechanisms that lead to cognitive impairment associated with COVID‐19 are not well understood.

69 citations


Journal ArticleDOI
01 Aug 2022-Cell
TL;DR: The discovery that the diatomic gas nitric oxide (NO) is generated by mammalian cells and serves to regulate a multitude of physiological processes has continued to fascinate biologists for almost four decades as discussed by the authors .

69 citations


Journal ArticleDOI
TL;DR: A concise summary of the ICE-CBF-COR pathway elucidating on the cross interconnections with other repressors, inhibitors, and activators to induce cold stress acclimation in plants is provided.
Abstract: Cold stress limits plant geographical distribution and influences plant growth, development, and yields. Plants as sessile organisms have evolved complex biochemical and physiological mechanisms to adapt to cold stress. These mechanisms are regulated by a series of transcription factors and proteins for efficient cold stress acclimation. It has been established that the ICE-CBF-COR signaling pathway in plants regulates how plants acclimatize to cold stress. Cold stress is perceived by receptor proteins, triggering signal transduction, and Inducer of CBF Expression (ICE) genes are activated and regulated, consequently upregulating the transcription and expression of the C-repeat Binding Factor (CBF) genes. The CBF protein binds to the C-repeat/Dehydration Responsive Element (CRT/DRE), a homeopathic element of the Cold Regulated genes (COR gene) promoter, activating their transcription. Transcriptional regulations and post-translational modifications regulate and modify these entities at different response levels by altering their expression or activities in the signaling cascade. These activities then lead to efficient cold stress tolerance. This paper contains a concise summary of the ICE-CBF-COR pathway elucidating on the cross interconnections with other repressors, inhibitors, and activators to induce cold stress acclimation in plants.

Journal ArticleDOI
TL;DR: In this paper , the authors focus on two major signaling pathways that respond to cold stress, and outline current knowledge of the transcriptional regulatory network and the post-translational regulation of transcription factors in the network.

Journal ArticleDOI
TL;DR: The focus of this review is to recapitulate the role of the AGEs/RAGE axis in the pathogenesis of type 2 diabetes mellitus and its associated complications, and to present an overview of future perspectives to offer new therapeutic interventions to intervene with the A GEs/ RAGE signaling pathway and to slow down the progression of diabetes-related complications.
Abstract: Persistent hyperglycemic state in type 2 diabetes mellitus leads to the initiation and progression of non-enzymatic glycation reaction with proteins and lipids and nucleic acids. Glycation reaction leads to the generation of a heterogeneous group of chemical moieties known as advanced glycated end products (AGEs), which play a central role in the pathophysiology of diabetic complications. The engagement of AGEs with its chief cellular receptor, RAGE, activates a myriad of signaling pathways such as MAPK/ERK, TGF-β, JNK, and NF-κB, leading to enhanced oxidative stress and inflammation. The downstream consequences of the AGEs/RAGE axis involve compromised insulin signaling, perturbation of metabolic homeostasis, RAGE-induced pancreatic beta cell toxicity, and epigenetic modifications. The AGEs/RAGE signaling instigated modulation of gene transcription is profoundly associated with the progression of type 2 diabetes mellitus and pathogenesis of diabetic complications. In this review, we will summarize the exogenous and endogenous sources of AGEs, their role in metabolic dysfunction, and current understandings of AGEs/RAGE signaling cascade. The focus of this review is to recapitulate the role of the AGEs/RAGE axis in the pathogenesis of type 2 diabetes mellitus and its associated complications. Furthermore, we present an overview of future perspectives to offer new therapeutic interventions to intervene with the AGEs/RAGE signaling pathway and to slow down the progression of diabetes-related complications.

Journal ArticleDOI
01 Mar 2022-Cell
TL;DR: In this article , the authors demonstrate that individual GPCRs signal via receptor-associated independent cAMP nanodomains (RAINs) that constitute self-sufficient, independent cell signaling units.

Journal ArticleDOI
TL;DR: A review of chloroplast-to-nucleus retrograde signaling pathways initiated by reactive oxygen species (ROS) and ROS-modified target molecules is presented in this article .
Abstract: Chloroplasts overproduce reactive oxygen species (ROS) under unfavorable environmental conditions, and these ROS are implicated in both signaling and oxidative damage. There is mounting evidence for their roles in translating environmental fluctuations into distinct physiological responses, but their targets, signaling cascades, and mutualism and antagonism with other stress signaling cascades and within ROS signaling remain poorly understood. Great efforts made in recent years have shed new light on chloroplast ROS-directed plant stress responses, from ROS perception to plant responses, in conditional mutants of Arabidopsis thaliana or under various stress conditions. Some articles have also reported the mechanisms underlying the complexity of ROS signaling pathways, with an emphasis on spatiotemporal regulation. ROS and oxidative modification of affected target proteins appear to induce retrograde signaling pathways to maintain chloroplast protein quality control and signaling at a whole-cell level using stress hormones. This review focuses on these seemingly interconnected chloroplast-to-nucleus retrograde signaling pathways initiated by ROS and ROS-modified target molecules. We also discuss future directions in chloroplast stress research to pave the way for discovering new signaling molecules and identifying intersectional signaling components that interact in multiple chloroplast signaling pathways. Chloroplast-derived reactive oxygen species (ROS) cause oxidative damage to macromolecules. However, oxidation-/damage-associated signaling pathways and their interplay with other signaling pathways remain largely unexplored. This review focuses mainly on chloroplast-mediated signaling pathways elicited by ROS and ROS-modified target molecules and discusses their potential interplay with other known stress-related signaling pathways.

Journal ArticleDOI
18 Mar 2022-eLife
TL;DR: In this paper , a set of BRET sensors monitoring the activation of the 12 G protein subtypes based on the translocation of their effectors to the plasma membrane (EMTA) was presented.
Abstract: The recognition that individual GPCRs can activate multiple signaling pathways has raised the possibility of developing drugs selectively targeting therapeutically relevant ones. This requires tools to determine which G proteins and βarrestins are activated by a given receptor. Here, we present a set of BRET sensors monitoring the activation of the 12 G protein subtypes based on the translocation of their effectors to the plasma membrane (EMTA). Unlike most of the existing detection systems, EMTA does not require modification of receptors or G proteins (except for Gs). EMTA was found to be suitable for the detection of constitutive activity, inverse agonism, biased signaling and polypharmacology. Profiling of 100 therapeutically relevant human GPCRs resulted in 1500 pathway-specific concentration-response curves and revealed a great diversity of coupling profiles ranging from exquisite selectivity to broad promiscuity. Overall, this work describes unique resources for studying the complexities underlying GPCR signaling and pharmacology.

Journal ArticleDOI
TL;DR: In this paper , the authors describe the signaling pathways involved in ischemic stroke and categorize them based on the pathophysiological processes they participate in, and summarize the therapeutic approaches targeted various pathophysiology.
Abstract: Ischemic stroke is caused primarily by an interruption in cerebral blood flow, which induces severe neural injuries, and is one of the leading causes of death and disability worldwide. Thus, it is of great necessity to further detailly elucidate the mechanisms of ischemic stroke and find out new therapies against the disease. In recent years, efforts have been made to understand the pathophysiology of ischemic stroke, including cellular excitotoxicity, oxidative stress, cell death processes, and neuroinflammation. In the meantime, a plethora of signaling pathways, either detrimental or neuroprotective, are also highly involved in the forementioned pathophysiology. These pathways are closely intertwined and form a complex signaling network. Also, these signaling pathways reveal therapeutic potential, as targeting these signaling pathways could possibly serve as therapeutic approaches against ischemic stroke. In this review, we describe the signaling pathways involved in ischemic stroke and categorize them based on the pathophysiological processes they participate in. Therapeutic approaches targeting these signaling pathways, which are associated with the pathophysiology mentioned above, are also discussed. Meanwhile, clinical trials regarding ischemic stroke, which potentially target the pathophysiology and the signaling pathways involved, are summarized in details. Conclusively, this review elucidated potential molecular mechanisms and related signaling pathways underlying ischemic stroke, and summarize the therapeutic approaches targeted various pathophysiology, with particular reference to clinical trials and future prospects for treating ischemic stroke.

Journal ArticleDOI
TL;DR: In this article, a review of the possible mechanisms of the host response following SARS-CoV-2 infection and surveyed current research conducted by in-vitro, in vivo and human observations, as well as existing suggestions.

Journal ArticleDOI
TL;DR: In this paper , a review of the possible mechanisms of the host response following SARS-CoV-2 infection and surveyed current research conducted by in vitro, in vivo and human observations, as well as existing suggestions.

Journal ArticleDOI
TL;DR: The G protein-bound structures of ADGRD1 and ADGRF1 are reported, which exhibit many unique features with regard to the tethered agonism and highlight the diversity and complexity of the signal transduction mechanisms of the aGPCRs.
Abstract: Adhesion G protein-coupled receptors (aGPCRs) are essential for a variety of physiological processes such as immune responses, organ development, cellular communication, proliferation and homeostasis1-7. An intrinsic manner of activation that involves a tethered agonist in the N-terminal region of the receptor has been proposed for the aGPCRs8,9, but its molecular mechanism remains elusive. Here we report the G protein-bound structures of ADGRD1 and ADGRF1, which exhibit many unique features with regard to the tethered agonism. The stalk region that proceeds the first transmembrane helix acts as the tethered agonist by forming extensive interactions with the transmembrane domain; these interactions are mostly conserved in ADGRD1 and ADGRF1, suggesting that a common stalk-transmembrane domain interaction pattern is shared by members of the aGPCR family. A similar stalk binding mode is observed in the structure of autoproteolysis-deficient ADGRF1, supporting a cleavage-independent manner of receptor activation. The stalk-induced activation is facilitated by a cascade of inter-helix interaction cores that are conserved in positions but show sequence variability in these two aGPCRs. Furthermore, the intracellular region of ADGRF1 contains a specific lipid-binding site, which proves to be functionally important and may serve as the recognition site for the previously discovered endogenous ADGRF1 ligand synaptamide. These findings highlight the diversity and complexity of the signal transduction mechanisms of the aGPCRs.

Journal ArticleDOI
01 Jan 2022-Cell
TL;DR: In this article , the co-stimulatory cell-surface molecule LFA-1 requires magnesium to adopt its active conformation on CD8+ T cells, thereby augmenting calcium flux, signal transduction, metabolic reprogramming, immune synapse formation, and specific cytotoxicity.

Journal ArticleDOI
TL;DR: In this article , the authors demonstrate that mechanical signaling that is based on the Catharanthus roseus RLK1-like kinase (CrRLK1L) subfamily receptor kinase FERONIA (FER) regulates the reorganization of cortical microtubule arrays in cotyledon epidermal pavement cells (PCs).

Journal ArticleDOI
TL;DR: In this paper , the unfolded protein response (UPR) is activated by ER stress and the UPR comprises three signaling pathways regulated downstream of the ER membrane proteins IRE1, ATF6, and PERK.

Journal ArticleDOI
TL;DR: Advances in understanding auxin signaling are highlighted, including auxin perception, rapid auxin responses, TRANSPORT INHIBITOR RESPONSE 1 and AUXin SIGNALING F-boxes, and the epigenetic regulation of auxin signaled branches.
Abstract: Auxin, one of the first identified and most widely studied phytohormones, has been and will remain a hot topic in plant biology. After more than a century of passionate exploration, the mysteries of its synthesis, transport, signaling, and metabolism have largely been unlocked. Due to the rapid development of new technologies, new methods, and new genetic materials, the study of auxin has entered the fast lane over the past 30 years. Here, we highlight advances in understanding auxin signaling, including auxin perception, rapid auxin responses, TRANSPORT INHIBITOR RESPONSE 1 and AUXIN SIGNALING F-boxes (TIR1/AFBs)-mediated transcriptional and non-transcriptional branches, and the epigenetic regulation of auxin signaling. We also focus on feedback inhibition mechanisms that prevent the over-amplification of auxin signals. In addition, we cover the TRANSMEMBRANE KINASEs (TMKs)-mediated non-canonical signaling, which converges with TIR1/AFBs-mediated transcriptional regulation to coordinate plant growth and development. The identification of additional auxin signaling components and their regulation will continue to open new avenues of research in this field, leading to an increasingly deeper, more comprehensive understanding of how auxin signals are interpreted at the cellular level to regulate plant growth and development. This article is protected by copyright. All rights reserved.

Journal ArticleDOI
TL;DR: In this article , the authors demonstrate that the CrRLK1L receptor kinase FERONIA (FER) binds the cell wall pectin, directly leading to the activation of the ROP6 guanosine triphosphatase (GTPase) signaling pathway that regulates the formation of the puzzle piece shape of pavement cells.

Journal ArticleDOI
TL;DR: In this paper , the authors reported the G protein-bound structures of ADGRD1 and ADGRF1, which exhibit many unique features with regard to the tethered agonism.
Abstract: Adhesion G protein-coupled receptors (aGPCRs) are essential for a variety of physiological processes such as immune responses, organ development, cellular communication, proliferation and homeostasis1-7. An intrinsic manner of activation that involves a tethered agonist in the N-terminal region of the receptor has been proposed for the aGPCRs8,9, but its molecular mechanism remains elusive. Here we report the G protein-bound structures of ADGRD1 and ADGRF1, which exhibit many unique features with regard to the tethered agonism. The stalk region that proceeds the first transmembrane helix acts as the tethered agonist by forming extensive interactions with the transmembrane domain; these interactions are mostly conserved in ADGRD1 and ADGRF1, suggesting that a common stalk-transmembrane domain interaction pattern is shared by members of the aGPCR family. A similar stalk binding mode is observed in the structure of autoproteolysis-deficient ADGRF1, supporting a cleavage-independent manner of receptor activation. The stalk-induced activation is facilitated by a cascade of inter-helix interaction cores that are conserved in positions but show sequence variability in these two aGPCRs. Furthermore, the intracellular region of ADGRF1 contains a specific lipid-binding site, which proves to be functionally important and may serve as the recognition site for the previously discovered endogenous ADGRF1 ligand synaptamide. These findings highlight the diversity and complexity of the signal transduction mechanisms of the aGPCRs.

Journal ArticleDOI
TL;DR: The Hippo pathway plays an integral role in both tumour suppressive and oncogenic processes, generally via regulation of a diverse set of genes involved in a range of biological functions as discussed by the authors .
Abstract: Tumorigenesis is a highly complex process, involving many interrelated and cross-acting signalling pathways. One such pathway that has garnered much attention in the field of cancer research over the last decade is the Hippo signalling pathway. Consisting of two antagonistic modules, the pathway plays an integral role in both tumour suppressive and oncogenic processes, generally via regulation of a diverse set of genes involved in a range of biological functions. This review discusses the history of the pathway within the context of cancer and explores some of the most recent discoveries as to how this critical transducer of cellular signalling can influence cancer progression. A special focus is on the various recent efforts to therapeutically target the key effectors of the pathway in both preclinical and clinical settings.

Journal ArticleDOI
01 Oct 2022-Cell
TL;DR: The discovery of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway arose from investigations of how cells respond to interferons (IFNs), revealing a paradigm in cell signaling conserved from slime molds to mammals as mentioned in this paper .

Journal ArticleDOI
TL;DR: The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling exert essential regulatory function in microbial and onco-immunology through the induction of cytokines, primarily type I interferons as mentioned in this paper .

Journal ArticleDOI
TL;DR: In this article , the authors argue that mitochondria are the processor of the cell, and together with the nucleus and other organelles they constitute the mitochondrial information processing system (MIPS).