scispace - formally typeset
Search or ask a question
Topic

Signal transduction

About: Signal transduction is a research topic. Over the lifetime, 122628 publications have been published within this topic receiving 8209258 citations. The topic is also known as: GO:0007165.


Papers
More filters
Journal ArticleDOI
05 Dec 1997-Science
TL;DR: Results indicate that PIAS3 is a specific inhibitor of Stat3, a signal transducer and activator of transcription-3 (Stat3) protein activated by the interleukin 6 family of cytokines, epidermal growth factor, and leptin.
Abstract: The signal transducer and activator of transcription–3 (Stat3) protein is activated by the interleukin 6 (IL-6) family of cytokines, epidermal growth factor, and leptin. A protein named PIAS3 (protein inhibitor of activated STAT) that binds to Stat3 was isolated and characterized. The association of PIAS3 with Stat3 in vivo was only observed in cells stimulated with ligands that cause the activation of Stat3. PIAS3 blocked the DNA-binding activity of Stat3 and inhibited Stat3-mediated gene activation. Although Stat1 is also phosphorylated in response to IL-6, PIAS3 did not interact with Stat1 or affect its DNA-binding or transcriptional activity. The results indicate that PIAS3 is a specific inhibitor of Stat3.

1,010 citations

Journal ArticleDOI
27 Nov 1998-Science
TL;DR: Rho guanosine triphosphatases (molecular switches that control the organization of the actin cytoskeleton) were found to be essential for both types of phagocytosis.
Abstract: The complement and immunoglobulin receptors are the major phagocytic receptors involved during infection. However, only immunoglobulin-dependent uptake results in a respiratory burst and an inflammatory response in macrophages. Rho guanosine triphosphatases (molecular switches that control the organization of the actin cytoskeleton) were found to be essential for both types of phagocytosis. Two distinct mechanisms of phagocytosis were identified: Type I, used by the immunoglobulin receptor, is mediated by Cdc42 and Rac, and type II, used by the complement receptor, is mediated by Rho. These results suggest a molecular basis for the different biological consequences that are associated with phagocytosis.

1,009 citations

Journal ArticleDOI
17 May 2017-Cancers
TL;DR: The molecular mechanisms that regulate EGFR signal transduction are reviewed, including the EGFR structure and its mutations, ligand binding and EGFR dimerization, as well as the signaling pathways that lead to G1 cell cycle progression.
Abstract: The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is commonly upregulated in cancers such as in non-small-cell lung cancer, metastatic colorectal cancer, glioblastoma, head and neck cancer, pancreatic cancer, and breast cancer Various mechanisms mediate the upregulation of EGFR activity, including common mutations and truncations to its extracellular domain, such as in the EGFRvIII truncations, as well as to its kinase domain, such as the L858R and T790M mutations, or the exon 19 truncation These EGFR aberrations over-activate downstream pro-oncogenic signaling pathways, including the RAS-RAF-MEK-ERK MAPK and AKT-PI3K-mTOR pathways These pathways then activate many biological outputs that are beneficial to cancer cell proliferation, including their chronic initiation and progression through the cell cycle Here, we review the molecular mechanisms that regulate EGFR signal transduction, including the EGFR structure and its mutations, ligand binding and EGFR dimerization, as well as the signaling pathways that lead to G1 cell cycle progression We focus on the induction of CYCLIN D expression, CDK4/6 activation, and the repression of cyclin-dependent kinase inhibitor proteins (CDKi) by EGFR signaling pathways We also discuss the successes and challenges of EGFR-targeted therapies, and the potential for their use in combination with CDK4/6 inhibitors

1,009 citations

Journal ArticleDOI
03 Dec 2009-Nature
TL;DR: This work shows that by combining the recently identified ABA receptor PYR1 with the type 2C protein phosphatase (PP2C) ABI1, the serine/threonine protein kinase SnRK2, and the transcription factor ABF2/AREB1, it can reconstitute ABA-triggered phosphorylation of the transcription factors in vitro and define a minimal set of core components of a complete major ABA signalling pathway.
Abstract: The phytohormone abscisic acid (ABA) plays an important role in several physiological responses such as stomatal conductance and seed dormancy and also in protecting plants against stress conditions such as drought and cold. Recently a family of proteins known as PYR/PYL/RCAR were identified as ABA receptors, but details of the signalling pathway downstream of ABA binding remained unclear. In this paper, Zhu and colleagues reconstitute the ABA-mediated signalling in vitro and test key observations in vivo. This is the first reported reconstitution of a plant hormone signalling pathway. The plant hormone abscisic acid (ABA) is a regulator of plant growth, development and responses to environmental stresses. Although several proteins have been reported to function as ABA receptors and many more are known to be involved in ABA signalling, the identities of ABA receptors remain controversial and the mechanism of signalling unclear. ABA-mediated signalling is now reconstituted in vitro, defining a minimal set of core components of the pathway. The phytohormone abscisic acid (ABA) regulates the expression of many genes in plants; it has critical functions in stress resistance and in growth and development1,2,3,4,5,6,7. Several proteins have been reported to function as ABA receptors8,9,10,11,12,13, and many more are known to be involved in ABA signalling3,4,14. However, the identities of ABA receptors remain controversial and the mechanism of signalling from perception to downstream gene expression is unclear15,16. Here we show that by combining the recently identified ABA receptor PYR1 with the type 2C protein phosphatase (PP2C) ABI1, the serine/threonine protein kinase SnRK2.6/OST1 and the transcription factor ABF2/AREB1, we can reconstitute ABA-triggered phosphorylation of the transcription factor in vitro. Introduction of these four components into plant protoplasts results in ABA-responsive gene expression. Protoplast and test-tube reconstitution assays were used to test the function of various members of the receptor, protein phosphatase and kinase families. Our results suggest that the default state of the SnRK2 kinases is an autophosphorylated, active state and that the SnRK2 kinases are kept inactive by the PP2Cs through physical interaction and dephosphorylation. We found that in the presence of ABA, the PYR/PYL (pyrabactin resistance 1/PYR1-like) receptor proteins can disrupt the interaction between the SnRK2s and PP2Cs, thus preventing the PP2C-mediated dephosphorylation of the SnRK2s and resulting in the activation of the SnRK2 kinases. Our results reveal new insights into ABA signalling mechanisms and define a minimal set of core components of a complete major ABA signalling pathway.

1,008 citations

Journal ArticleDOI
TL;DR: The characterization of the Akt1 knockout mice and its comparison to the previously reported Akt2 deficiency phenotype reveals the non-redundant functions ofAkt1 andAkt2 genes with respect to organismal growth and insulin-regulated glucose metabolism.

1,008 citations


Network Information
Related Topics (5)
Transcription factor
82.8K papers, 5.4M citations
96% related
Regulation of gene expression
85.4K papers, 5.8M citations
96% related
Cellular differentiation
90.9K papers, 6M citations
95% related
Gene expression
113.3K papers, 5.5M citations
95% related
Receptor
159.3K papers, 8.2M citations
94% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232,989
20225,166
20213,971
20204,179
20194,445
20184,585