scispace - formally typeset
Search or ask a question
Topic

Signal transduction

About: Signal transduction is a research topic. Over the lifetime, 122628 publications have been published within this topic receiving 8209258 citations. The topic is also known as: GO:0007165.


Papers
More filters
Journal ArticleDOI
TL;DR: An endosomal sorting machinery capable of controlling the fate, and, hence, signaling potency, of growth factor receptors is revealed.
Abstract: Ligand-induced down-regulation of two growth factor receptors, EGF receptor (ErbB-1) and ErbB-3, correlates with differential ability to recruit c-Cbl, whose invertebrate orthologs are negative regulators of ErbB. We report that ligand-induced degradation of internalized ErbB-1, but not ErbB-3, is mediated by transient mobilization of a minor fraction of c-Cbl into ErbB-1-containing endosomes. This recruitment depends on the receptor’s tyrosine kinase activity and an intact carboxy-terminal region. The alternative fate is recycling of internalized ErbBs to the cell surface. Cbl-mediated receptor sorting involves covalent attachment of ubiquitin molecules, and subsequent lysosomal and proteasomal degradation. The oncogenic viral form of Cbl inhibits down-regulation by shunting endocytosed receptors to the recycling pathway. These results reveal an endosomal sorting machinery capable of controlling the fate, and, hence, signaling potency, of growth factor receptors.

891 citations

Journal ArticleDOI
29 Mar 1996-Science
TL;DR: In every instance investigated, the posttranscriptional alteration of p27 protein levels was achieved in part by a mechanism of translational control, although in density-arrested fibroblasts and thymidine-ar Arrested HeLa cells the half-life of the protein was also changed.
Abstract: Cell cycle phase transitions in eukaryotic cells are driven by regulation of the activity of protein kinases known as cyclin-dependent kinases (Cdks). A broad spectrum Cdk-inhibitory activity associated with a 28-kilodalton protein (p28Ick1) was induced in cells treated with the drug lovastatin or upon density-mediated growth arrest and was periodic in the cell cycle, with peak activity in G1. The p28Ick1 protein was shown to be identical to p27Kip1, and the periodic or induced inhibitory activity resulted from a periodic accumulation of the protein. Variations in the amount of p27 protein occurred, whereas the abundance of the p27 messenger RNA remained unchanged. In every instance investigated, the posttranscriptional alteration of p27 protein levels was achieved in part by a mechanism of translational control, although in density-arrested fibroblasts and thymidine-arrested HeLa cells the half-life of the protein was also changed.

890 citations

Journal ArticleDOI
12 Jun 2003-Nature
TL;DR: It is proposed that this unusual protein modification both protects the active-site cysteine residue of PTP1B from irreversible oxidation to sulphonic acid and permits redox regulation of the enzyme by promoting its reversible reduction by thiols.
Abstract: The second messenger hydrogen peroxide is required for optimal activation of numerous signal transduction pathways, particularly those mediated by protein tyrosine kinases. One mechanism by which hydrogen peroxide regulates cellular processes is the transient inhibition of protein tyrosine phosphatases through the reversible oxidization of their catalytic cysteine, which suppresses protein dephosphorylation. Here we describe a structural analysis of the redox-dependent regulation of protein tyrosine phosphatase 1B (PTP1B), which is reversibly inhibited by oxidation after cells are stimulated with insulin and epidermal growth factor. The sulphenic acid intermediate produced in response to PTP1B oxidation is rapidly converted into a previously unknown sulphenyl-amide species, in which the sulphur atom of the catalytic cysteine is covalently linked to the main chain nitrogen of an adjacent residue. Oxidation of PTP1B to the sulphenyl-amide form is accompanied by large conformational changes in the catalytic site that inhibit substrate binding. We propose that this unusual protein modification both protects the active-site cysteine residue of PTP1B from irreversible oxidation to sulphonic acid and permits redox regulation of the enzyme by promoting its reversible reduction by thiols.

890 citations

Journal ArticleDOI
18 Oct 2004-Oncogene
TL;DR: This volume has attempted to provide the reader with an overview of the current understanding of the function of Src family kinases in the regulation of selected cellular signaling pathways.
Abstract: The Src family of protein tyrosine kinases (SFKs) plays key roles in regulating signal transduction by a diverse set of cell surface receptors in the context of a variety of cellular environments. SFKs have evolved many ingenious molecular strategies to couple receptors with the cytoplasmic signaling machinery. The contributions to this issue of ONCOGENE describe how this machinery regulates fundamental cellular processes, including cell growth, differentiation, cell shape, migration and survival, and specialized cell signals. The pleiotropic functions of Src and Src family members underscore the importance of these kinases and explain why many of the members of this family have been identified as cellular oncogenes. In this volume, we have attempted to provide the reader with an overview of the current understanding of the function of Src family kinases in the regulation of selected cellular signaling pathways.

889 citations

Journal ArticleDOI
TL;DR: This work proposes a model where p53 can contribute to apoptosis by direct signaling at the mitochondria, thereby amplifying the transcription-dependent apoptosis of p53.

888 citations


Network Information
Related Topics (5)
Transcription factor
82.8K papers, 5.4M citations
96% related
Regulation of gene expression
85.4K papers, 5.8M citations
96% related
Cellular differentiation
90.9K papers, 6M citations
95% related
Gene expression
113.3K papers, 5.5M citations
95% related
Receptor
159.3K papers, 8.2M citations
94% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232,989
20225,166
20213,971
20204,179
20194,445
20184,585