scispace - formally typeset
Search or ask a question
Topic

Signal transduction

About: Signal transduction is a research topic. Over the lifetime, 122628 publications have been published within this topic receiving 8209258 citations. The topic is also known as: GO:0007165.


Papers
More filters
Journal ArticleDOI
10 Mar 1995-Science
TL;DR: Results suggest that phosphorylation at one or both of these residues is critical for activation of NF-kappa B, the transcription factor inhibited by I kappa B-alpha.
Abstract: I kappa B-alpha inhibits transcription factor NF-kappa B by retaining it in the cytoplasm. Various stimuli, typically those associated with stress or pathogens, rapidly inactivate I kappa B-alpha. This liberates NF-kappa B to translocate to the nucleus and initiate transcription of genes important for the defense of the organism. Activation of NF-kappa B correlates with phosphorylation of I kappa B-alpha and requires the proteolysis of this inhibitor. When either serine-32 or serine-36 of I kappa B-alpha was mutated, the protein did not undergo signal-induced phosphorylation or degradation, and NF-kappa B could not be activated. These results suggest that phosphorylation at one or both of these residues is critical for activation of NF-kappa B.

1,457 citations

Journal ArticleDOI
TL;DR: It is shown that the saturated fatty acid palmitate, but not unsaturated oleate, induces the activation of the NLRP3-ASC inflammasome, causing caspase-1, IL-1β and IL-18 production, which affects insulin sensitivity through tumor necrosis factor–independent and dependent pathways.
Abstract: High-fat diet (HFD) and inflammation are key contributors to insulin resistance and type 2 diabetes (T2D). Interleukin (IL)-1b plays a role in insulin resistance, yet how IL-1b is induced by the fatty acids in an HFD, and how this alters insulin signaling, is unclear. We show that the saturated fatty acid palmitate, but not unsaturated oleate, induces the activation of the NLRP3-ASC inflammasome, causing caspase-1, IL-1b and IL-18 production. This pathway involves mitochondrial reactive oxygen species and the AMP-activated protein kinase and unc-51–like kinase-1 (ULK1) autophagy signaling cascade. Inflammasome activation in hematopoietic cells impairs insulin signaling in several target tissues to reduce glucose tolerance and insulin sensitivity. Furthermore, IL-1b affects insulin sensitivity through tumor necrosis factor–independent and dependent pathways. These findings provide insights into the association of inflammation, diet and T2D.

1,456 citations

Journal ArticleDOI
TL;DR: Rho GTPases control signal transduction pathways that link cell surface receptors to a variety of intracellular responses, and their role in cell migration is reviewed.

1,450 citations

Journal ArticleDOI
TL;DR: Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning.
Abstract: The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs) Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer © 2015 Wiley Periodicals, Inc

1,445 citations

Journal ArticleDOI
TL;DR: Intriguingly, most organelle-specific death responses finally lead to either MMP or caspase activation, both of which might function as central integrators of the death pathway, thereby streamlining lysosome-, Golgi- or ER-elicited responses into a common pathway.
Abstract: Nuclear DNA damage and ligation of plasma-membrane death receptors have long been recognized as initial triggers of apoptosis that induce mitochondrial membrane permeabilization (MMP) and/or the direct activation of caspases. Accumulating evidence suggests that other organelles, including the endoplasmic reticulum (ER), lysosomes and the Golgi apparatus, are also major points of integration of pro-apoptotic signalling or damage sensing. Each organelle possesses sensors that detect specific alterations, locally activates signal transduction pathways and emits signals that ensure inter-organellar cross-talk. The ER senses local stress through chaperones, Ca2+-binding proteins and Ca2+ release channels, which might transmit ER Ca2+ responses to mitochondria. The ER also contains several Bcl-2-binding proteins, and Bcl-2 has been reported to exert part of its cytoprotective effect within the ER. Upon membrane destabilization, lysosomes release cathepsins that are endowed with the capacity of triggering MMP. The Golgi apparatus constitutes a privileged site for the generation of the pro-apoptotic mediator ganglioside GD3, facilitates local caspase-2 activation and might serve as a storage organelle for latent death receptors. Intriguingly, most organelle-specific death responses finally lead to either MMP or caspase activation, both of which might function as central integrators of the death pathway, thereby streamlining lysosome-, Golgi- or ER-elicited responses into a common pathway.

1,443 citations


Network Information
Related Topics (5)
Transcription factor
82.8K papers, 5.4M citations
96% related
Regulation of gene expression
85.4K papers, 5.8M citations
96% related
Cellular differentiation
90.9K papers, 6M citations
95% related
Gene expression
113.3K papers, 5.5M citations
95% related
Receptor
159.3K papers, 8.2M citations
94% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232,989
20225,166
20213,971
20204,179
20194,445
20184,585