scispace - formally typeset
Search or ask a question
Topic

Signal transduction

About: Signal transduction is a research topic. Over the lifetime, 122628 publications have been published within this topic receiving 8209258 citations. The topic is also known as: GO:0007165.


Papers
More filters
Journal ArticleDOI
18 Jan 1991-Science
TL;DR: Defining the biological roles of this emerging family of receptors and their ligands may illuminate the process of protein trafficking in cells and the mechanisms of signal transmission through the cytoplasm.
Abstract: Cyclosporin A, FK506, and rapamycin are inhibitors of specific signal transduction pathways that lead to T lymphocyte activation. These immunosuppressive agents bind with high affinity to cytoplasmic receptors termed immunophilins (immunosuppressant binding proteins). Studies in this area have focused on the structural basis for the molecular recognition of immunosuppressants by immunophilins and the biological consequences of their interactions. Defining the biological roles of this emerging family of receptors and their ligands may illuminate the process of protein trafficking in cells and the mechanisms of signal transmission through the cytoplasm.

1,438 citations

Journal ArticleDOI
TL;DR: The role of p38 as a signal transduction mediator is focused on and the evidence linking p38 to inflammation, cell cycle, cell death, development, cell differentiation, senescence and tumorigenesis in specific cell types is examined.
Abstract: The family members of the mitogen-activated protein (MAP) kinases mediate a wide variety of cellular behaviors in response to extracellular stimuli. One of the four main sub-groups, the p38 group of MAP kinases, serve as a nexus for signal transduction and play a vital role in numerous biological processes. In this review, we highlight the known characteristics and components of the p38 pathway along with the mechanism and consequences of p38 activation. We focus on the role of p38 as a signal transduction mediator and examine the evidence linking p38 to inflammation, cell cycle, cell death, development, cell differentiation, senescence and tumorigenesis in specific cell types. Upstream and downstream components of p38 are described and questions remaining to be answered are posed. Finally, we propose several directions for future research on p38.

1,436 citations

Journal ArticleDOI
26 Jun 1997-Nature
TL;DR: A new SH2-domain-containing protein is isolated, JAB, which is a JAK-binding protein that interacts with the Jak2 tyrosine-kinase JH1 domain, and JAB and CIS appear to function as negative regulators in the JAK signalling pathway.
Abstract: The proliferation and differentiation of cells of many lineages are regulated by secreted proteins known as cytokines. Cytokines exert their biological effect through binding to cell-surface receptors that are associated with one or more members of the JAK family of cytoplasmic tyrosine kinases. Cytokine-induced receptor dimerization leads to the activation of JAKs, rapid tyrosine-phosphorylation of the cytoplasmic domains, and subsequent recruitment of various signalling proteins, including members of the STAT family of transcription factors, to the receptor complex. Using the yeast two-hybrid system, we have now isolated a new SH2-domain-containing protein, JAB, which is a JAK-binding protein that interacts with the Jak2 tyrosine-kinase JH1 domain. JAB is structurally related to CIS, a cytokine-inducible SH2 protein. Interaction of JAB with Jak1, Jak2 or Jak3 markedly reduces their tyrosine-kinase activity and suppresses the tyrosine-phosphorylation and activation of STATs. JAB and CIS appear to function as negative regulators in the JAK signalling pathway.

1,436 citations

Journal ArticleDOI
21 Oct 1999-Nature
TL;DR: It is shown that Toll-like receptor 2 is recruited specifically to macrophage phagosomes containing yeast, and that a point mutation in the receptor abrogates inflammatory responses to yeast and Gram-positive bacteria, but not to Gram-negative bacteria.
Abstract: Macrophages orchestrate innate immunity by phagocytosing pathogens and coordinating inflammatory responses. Effective defence requires the host to discriminate between different pathogens. The specificity of innate immune recognition in Drosophila is mediated by the Toll family of receptors; Toll mediates anti-fungal responses, whereas 18-wheeler mediates anti-bacterial defence. A large number of Toll homologues have been identified in mammals, and Toll-like receptor 4 is critical in responses to Gram-negative bacteria. Here we show that Toll-like receptor 2 is recruited specifically to macrophage phagosomes containing yeast, and that a point mutation in the receptor abrogates inflammatory responses to yeast and Gram-positive bacteria, but not to Gram-negative bacteria. Thus, during the phagocytosis of pathogens, two classes of innate immune receptors cooperate to mediate host defence: phagocytic receptors, such as the mannose receptor, signal particle internalization, and the Toll-like receptors sample the contents of the vacuole and trigger an inflammatory response appropriate to defence against the specific organism.

1,422 citations

Journal ArticleDOI
11 Aug 1989-Cell
TL;DR: It is reported that an 80 kd single polypeptide chain (IL-6-R) is involved in IL-6 binding and that IL- 6 triggers the association of this receptor with a non-ligand-binding membrane glycoprotein, gp130, extracellularly and can provide the IL-7 signal.

1,420 citations


Network Information
Related Topics (5)
Transcription factor
82.8K papers, 5.4M citations
96% related
Regulation of gene expression
85.4K papers, 5.8M citations
96% related
Cellular differentiation
90.9K papers, 6M citations
95% related
Gene expression
113.3K papers, 5.5M citations
95% related
Receptor
159.3K papers, 8.2M citations
94% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232,989
20225,166
20213,971
20204,179
20194,445
20184,585