scispace - formally typeset
Search or ask a question
Topic

Signal transduction

About: Signal transduction is a research topic. Over the lifetime, 122628 publications have been published within this topic receiving 8209258 citations. The topic is also known as: GO:0007165.


Papers
More filters
Journal ArticleDOI
05 Jun 2008-Nature
TL;DR: It is shown, with the use of mice lacking IKK-β in different cell types, that NF-κB is a critical transcriptional activator of HIF-1α and that basal NF-σB activity is required for Hif-1 α protein accumulation under hypoxia in cultured cells and in the liver and brain of hypoxic animals.
Abstract: The hypoxic response is an ancient stress response triggered by low ambient oxygen (O2) (ref. 1) and controlled by hypoxia-inducible transcription factor-1 (HIF-1), whose alpha subunit is rapidly degraded under normoxia but stabilized when O2-dependent prolyl hydroxylases (PHDs) that target its O2-dependent degradation domain are inhibited. Thus, the amount of HIF-1alpha, which controls genes involved in energy metabolism and angiogenesis, is regulated post-translationally. Another ancient stress response is the innate immune response, regulated by several transcription factors, among which NF-kappaB plays a central role. NF-kappaB activation is controlled by IkappaB kinases (IKK), mainly IKK-beta, needed for phosphorylation-induced degradation of IkappaB inhibitors in response to infection and inflammation. IKK-beta is modestly activated in hypoxic cell cultures when PHDs that attenuate its activation are inhibited. However, defining the relationship between NF-kappaB and HIF-1alpha has proven elusive. Using in vitro systems, it was reported that HIF-1alpha activates NF-kappaB, that NF-kappaB controls HIF-1alpha transcription and that HIF-1alpha activation may be concurrent with inhibition of NF-kappaB. Here we show, with the use of mice lacking IKK-beta in different cell types, that NF-kappaB is a critical transcriptional activator of HIF-1alpha and that basal NF-kappaB activity is required for HIF-1alpha protein accumulation under hypoxia in cultured cells and in the liver and brain of hypoxic animals. IKK-beta deficiency results in defective induction of HIF-1alpha target genes including vascular endothelial growth factor. IKK-beta is also essential for HIF-1alpha accumulation in macrophages experiencing a bacterial infection. Hence, IKK-beta is an important physiological contributor to the hypoxic response, linking it to innate immunity and inflammation.

1,340 citations

Journal ArticleDOI
TL;DR: The switching on and off of Nrf2 protects cells against free radical damage, prevents apoptosis, and promotes cell survival, and is a mechanism of critical importance for cellular protection and cell survival.

1,336 citations

Journal ArticleDOI
TL;DR: Pannexin‐1, a recently described mammalian protein that functions as a hemichannel when ectopically expressed, is identified as this dye‐uptake pathway and signalling through pannexin•1 is required for processing of caspase‐1 and release of mature IL‐1β induced by P2X7 receptor activation.
Abstract: P2X 7 receptors are ATP‐gated cation channels; their activation in macrophage also leads to rapid opening of a membrane pore permeable to dyes such as ethidium, and to release of the pro‐inflammatory cytokine, interleukin‐1β (IL‐1β). It has not been known what this dye‐uptake path is, or whether it is involved in downstream signalling to IL‐1β release. Here, we identify pannexin‐1, a recently described mammalian protein that functions as a hemichannel when ectopically expressed, as this dye‐uptake pathway and show that signalling through pannexin‐1 is required for processing of caspase‐1 and release of mature IL‐1β induced by P2X 7 receptor activation.

1,336 citations

Journal ArticleDOI
29 Jun 2007-Cell
TL;DR: It is found that Bim is essential for ER stress-induced apoptosis in a diverse range of cell types both in culture and within the whole animal.

1,335 citations

Journal ArticleDOI
19 Apr 2002-Cell
TL;DR: Calcium signaling activates the phosphatase calcineurin and induces movement of NFATc proteins into the nucleus, where they cooperate with other proteins to form complexes on DNA.

1,335 citations


Network Information
Related Topics (5)
Transcription factor
82.8K papers, 5.4M citations
96% related
Regulation of gene expression
85.4K papers, 5.8M citations
96% related
Cellular differentiation
90.9K papers, 6M citations
95% related
Gene expression
113.3K papers, 5.5M citations
95% related
Receptor
159.3K papers, 8.2M citations
94% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232,989
20225,166
20213,971
20204,179
20194,445
20184,585