scispace - formally typeset
Search or ask a question
Topic

Signal transduction

About: Signal transduction is a research topic. Over the lifetime, 122628 publications have been published within this topic receiving 8209258 citations. The topic is also known as: GO:0007165.


Papers
More filters
Journal ArticleDOI
TL;DR: This review is intended to sum up the present understanding of the events following LPS binding to TLR4, and to create a model of the signalling pathways activated by LPS.
Abstract: An understanding of lipopolysaccharide (LPS) signal transduction is a key goal in the effort to provide a molecular basis for the lethal effect of LPS during septic shock and point the way to novel therapies. Rapid progress in this field during the last 6 years has resulted in the discovery of not only the receptor for LPS - Toll-like receptor 4 (TLR4) - but also in a better appreciation of the complexity of the signalling pathways activated by LPS. Soon after the discovery of TLR4, the formation of a receptor complex in response to LPS, consisting of dimerized TLR4 and MD-2, was described. Intracellular events following the formation of this receptor complex depend on different sets of adapters. An early response, which is dependent on MyD88 and MyD88-like adapter (Mal), leads to the activation of nuclear factor-kappaB (NF-kappaB). A later response to LPS makes use of TIR-domain-containing adapter-inducing interferon-beta (TRIF) and TRIF-related adapter molecule (TRAM), and leads to the late activation of NF-kappaB and IRF3, and to the induction of cytokines, chemokines, and other transcription factors. As LPS signal transduction is an area of intense research and rapid progress, this review is intended to sum up our present understanding of the events following LPS binding to TLR4, and we also attempt to create a model of the signalling pathways activated by LPS.

1,171 citations

Journal ArticleDOI
TL;DR: It is shown that by deleting ASK1 in mice, TNF‐ and H2O2‐induced sustained activations of JNK and p38 are lost inASK1−/− embryonic fibroblasts, and that ASK 1−-/− cells are resistant to TNF- and H1N1‐induced apoptosis.
Abstract: Apoptosis signal‐regulating kinase (ASK) 1 is activated in response to various cytotoxic stresses including TNF, Fas and reactive oxygen species (ROS) such as H2O2, and activates c‐Jun NH2‐terminal kinase (JNK) and p38. However, the roles of JNK and p38 signaling pathways during apoptosis have been controversial. Here we show that by deleting ASK1 in mice, TNF‐ and H2O2‐induced sustained activations of JNK and p38 are lost in ASK1 −/− embryonic fibroblasts, and that ASK1 −/− cells are resistant to TNF‐ and H2O2‐induced apoptosis. TNF‐ but not Fas‐induced apoptosis requires ROS‐dependent activation of ASK1–JNK/p38 pathways. Thus, ASK1 is selectively required for TNF‐ and oxidative stress‐induced sustained activations of JNK/p38 and apoptosis.

1,171 citations

Journal ArticleDOI
27 Mar 2002-Oncogene
TL;DR: It is shown that VEGF expression correlates with Stat3 activity in diverse human cancer cell lines and indicates that Stat3 represents a common molecular target for blocking angiogenesis induced by multiple signaling pathways in human cancers.
Abstract: Non-receptor and receptor tyrosine kinases, such as Src and EGF receptor (EGFR), are major inducers of vascular endothelial growth factor (VEGF), one of the most potent mediators of angiogenesis. While tyrosine kinases signal through multiple pathways, signal transducer and activation of transcription 3 (Stat3) is a point of convergence for many of these and is constitutively activated with high frequency in a wide range of cancer cells. Here, we show that VEGF expression correlates with Stat3 activity in diverse human cancer cell lines. An activated Stat3 mutant (Stat3C) up-regulates VEGF expression and stimulates tumor angiogenesis. Stat3C-induced VEGF up-regulation is abrogated when a Stat3-binding site in the VEGF promoter is mutated. Furthermore, interrupting Stat3 signaling with dominant-negative Stat3 protein or Stat3 antisense oligonucleotide in tumor cells down-regulates VEGF expression. Consistent with an important role of Stat3 in VEGF up-regulation induced by various oncogenic tyrosine kinases, v-Src-mediated VEGF expression is inhibited when Stat3 signaling is blocked. Moreover, chromatin immunoprecipitation assays indicate that Stat3 protein binds to the VEGF promoter in vivo and mutation of a Stat3-binding site in the VEGF promoter abrogates v-Src-induced VEGF promoter activity. These studies provide evidence that the VEGF gene is regulated directly by Stat3 protein, and indicate that Stat3 represents a common molecular target for blocking angiogenesis induced by multiple signaling pathways in human cancers.

1,171 citations

Journal ArticleDOI
18 Mar 1999-Nature
TL;DR: It is shown that the MAPKK kinase TAK1 acts upstream of NIK in the IL-1-activated signalling pathway and that TAK 1 associates with TRAF6 during IL- 1 signalling, which indicates that Taker1 links TRAf6 to the NIK–IKK cascade in theIL-1 signalling pathway.
Abstract: Interleukin-1 (IL-1) is a proinflammatory cytokine that has several effects in the inflammation process When it binds to its cell-surface receptor, IL-1 initiates a signalling cascade that leads to activation of the transcription factor NF-kappaB and is relayed through the protein TRAF6 and a succession of kinase enzymes, including NF-kappaB-inducing kinase (NIK) and I kappaB kinases (IKKs) However, the molecular mechanism by which NIK is activated is not understood Here we show that the MAPKK kinase TAK1 acts upstream of NIK in the IL-1-activated signalling pathway and that TAK1 associates with TRAF6 during IL-1 signalling Stimulation of TAK1 causes activation of NF-kappaB, which is blocked by dominant-negative mutants of NIK, and an inactive TAK1 mutant prevents activation of NF-kappaB that is mediated by IL-1 but not by NIK Activated TAK1 phosphorylates NIK, which stimulates IKK-alpha activity Our results indicate that TAK1 links TRAF6 to the NIK-IKK cascade in the IL-1 signalling pathway

1,170 citations

Journal ArticleDOI
TL;DR: These studies suggest that TRIF and TRAM both function in LPS-TLR4 signaling to regulate the MyD88-independent pathway during the innate immune response to LPS.
Abstract: Toll–IL-1–resistance (TIR) domain–containing adaptor-inducing IFN-β (TRIF)–related adaptor molecule (TRAM) is the fourth TIR domain–containing adaptor protein to be described that participates in Toll receptor signaling. Like TRIF, TRAM activates interferon regulatory factor (IRF)-3, IRF-7, and NF-κB-dependent signaling pathways. Toll-like receptor (TLR)3 and 4 activate these pathways to induce IFN-α/β, regulated on activation, normal T cell expressed and secreted (RANTES), and γ interferon–inducible protein 10 (IP-10) expression independently of the adaptor protein myeloid differentiation factor 88 (MyD88). Dominant negative and siRNA studies performed here demonstrate that TRIF functions downstream of both the TLR3 (dsRNA) and TLR4 (LPS) signaling pathways, whereas the function of TRAM is restricted to the TLR4 pathway. TRAM interacts with TRIF, MyD88 adaptor–like protein (Mal)/TIRAP, and TLR4 but not with TLR3. These studies suggest that TRIF and TRAM both function in LPS-TLR4 signaling to regulate the MyD88-independent pathway during the innate immune response to LPS.

1,170 citations


Network Information
Related Topics (5)
Transcription factor
82.8K papers, 5.4M citations
96% related
Regulation of gene expression
85.4K papers, 5.8M citations
96% related
Cellular differentiation
90.9K papers, 6M citations
95% related
Gene expression
113.3K papers, 5.5M citations
95% related
Receptor
159.3K papers, 8.2M citations
94% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232,989
20225,166
20213,971
20204,179
20194,445
20184,585