scispace - formally typeset
Search or ask a question
Topic

Silhouette

About: Silhouette is a research topic. Over the lifetime, 3981 publications have been published within this topic receiving 93937 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A new graphical display is proposed for partitioning techniques, where each cluster is represented by a so-called silhouette, which is based on the comparison of its tightness and separation, and provides an evaluation of clustering validity.

14,144 citations

Journal ArticleDOI
TL;DR: Experimental results show that the proposed GEI is an effective and efficient gait representation for individual recognition, and the proposed approach achieves highly competitive performance with respect to the published gait recognition approaches.
Abstract: In this paper, we propose a new spatio-temporal gait representation, called Gait Energy Image (GEI), to characterize human walking properties for individual recognition by gait. To address the problem of the lack of training templates, we also propose a novel approach for human recognition by combining statistical gait features from real and synthetic templates. We directly compute the real templates from training silhouette sequences, while we generate the synthetic templates from training sequences by simulating silhouette distortion. We use a statistical approach for learning effective features from real and synthetic templates. We compare the proposed GEI-based gait recognition approach with other gait recognition approaches on USF HumanID Database. Experimental results show that the proposed GEI is an effective and efficient gait representation for individual recognition, and the proposed approach achieves highly competitive performance with respect to the published gait recognition approaches

1,670 citations

Proceedings ArticleDOI
27 Jun 2016
TL;DR: This work presents a new benchmark dataset and evaluation methodology for the area of video object segmentation, named DAVIS (Densely Annotated VIdeo Segmentation), and provides a comprehensive analysis of several state-of-the-art segmentation approaches using three complementary metrics.
Abstract: Over the years, datasets and benchmarks have proven their fundamental importance in computer vision research, enabling targeted progress and objective comparisons in many fields. At the same time, legacy datasets may impend the evolution of a field due to saturated algorithm performance and the lack of contemporary, high quality data. In this work we present a new benchmark dataset and evaluation methodology for the area of video object segmentation. The dataset, named DAVIS (Densely Annotated VIdeo Segmentation), consists of fifty high quality, Full HD video sequences, spanning multiple occurrences of common video object segmentation challenges such as occlusions, motionblur and appearance changes. Each video is accompanied by densely annotated, pixel-accurate and per-frame ground truth segmentation. In addition, we provide a comprehensive analysis of several state-of-the-art segmentation approaches using three complementary metrics that measure the spatial extent of the segmentation, the accuracy of the silhouette contours and the temporal coherence. The results uncover strengths and weaknesses of current approaches, opening up promising directions for future works.

1,656 citations

Journal ArticleDOI
TL;DR: This paper addresses the problem of finding which parts of a nonconvex object are relevant for silhouette-based image understanding and introduces the geometric concept of visual hull of a 3-D object, which is the maximal object silhouette-equivalent to S.
Abstract: Many algorithms for both identifying and reconstructing a 3-D object are based on the 2-D silhouettes of the object. In general, identifying a nonconvex object using a silhouette-based approach implies neglecting some features of its surface as identification clues. The same features cannot be reconstructed by volume intersection techniques using multiple silhouettes of the object. This paper addresses the problem of finding which parts of a nonconvex object are relevant for silhouette-based image understanding. For this purpose, the geometric concept of visual hull of a 3-D object is introduced. This is the closest approximation of object S that can be obtained with the volume intersection approach; it is the maximal object silhouette-equivalent to S, i.e., which can be substituted for S without affecting any silhouette. Only the parts of the surface of S that also lie on the surface of the visual hull can be reconstructed or identified using silhouette-based algorithms. The visual hull depends not only on the object but also on the region allowed to the viewpoint. Two main viewing regions result in the external and internal visual hull. In the former case the viewing region is related to the convex hull of S, in the latter it is bounded by S. The internal visual hull also admits an interpretation not related to silhouettes. Algorithms for computing visual hulls are presented and their complexity analyzed. In general, the visual hull of a 3-D planar face object turns out to be bounded by planar and curved patches. >

1,585 citations

Proceedings ArticleDOI
13 Jun 2010
TL;DR: An action graph is employed to model explicitly the dynamics of the actions and a bag of 3D points to characterize a set of salient postures that correspond to the nodes in the action graph to recognize human actions from sequences of depth maps.
Abstract: This paper presents a method to recognize human actions from sequences of depth maps. Specifically, we employ an action graph to model explicitly the dynamics of the actions and a bag of 3D points to characterize a set of salient postures that correspond to the nodes in the action graph. In addition, we propose a simple, but effective projection based sampling scheme to sample the bag of 3D points from the depth maps. Experimental results have shown that over 90% recognition accuracy were achieved by sampling only about 1% 3D points from the depth maps. Compared to the 2D silhouette based recognition, the recognition errors were halved. In addition, we demonstrate the potential of the bag of points posture model to deal with occlusions through simulation.

1,437 citations


Network Information
Related Topics (5)
Feature (computer vision)
128.2K papers, 1.7M citations
76% related
Image segmentation
79.6K papers, 1.8M citations
75% related
Pixel
136.5K papers, 1.5M citations
74% related
Feature extraction
111.8K papers, 2.1M citations
74% related
Image processing
229.9K papers, 3.5M citations
74% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023195
2022422
2021108
2020146
2019181
2018153