scispace - formally typeset
Search or ask a question
Topic

Silica gel

About: Silica gel is a research topic. Over the lifetime, 22313 publications have been published within this topic receiving 325516 citations. The topic is also known as: Amorphous silica & Precipitated amorphous silica.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors determined the water vapor permeability and the mechanical and thermal properties of edible films based on bovine hide and pigskin gelatins using a gravimetric method at 22°C.

560 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the synthesis of silica aerogels by the sol-gel method, as well as drying techniques and applications in current industrial development and scientific research is presented.
Abstract: Silica aerogels have drawn a lot of interest both in science and technology because of their low bulk density (up to 95% of their volume is air), hydrophobicity, low thermal conductivity, high surface area, and optical transparency. Aerogels are synthesized from molecular precursors by sol-gel processing. Special drying techniques must be applied to replace the pore liquid with air while maintaining the solid network. Supercritical drying is most common; however, recently developed methods allow removal of the liquid at atmospheric pressure after chemical modification of the inner surface of the gels, leaving only a porous silica network filled with air. Therefore, by considering the surprising properties of aerogels, the present review addresses synthesis of silica aerogels by the sol-gel method, as well as drying techniques and applications in current industrial development and scientific research.

557 citations

Journal ArticleDOI
TL;DR: A "surface-protected etching" strategy that allows convenient conversion of sol-gel derived silica into porous structures and it is shown that, by controlling the extent of etching, it is possible to control the permeation rate of the chemical species through the shells.
Abstract: We describe a "surface-protected etching" strategy that allows convenient conversion of sol-gel derived silica into porous structures. Poly(vinyl pyrrolidone) is used to protect the near surface layer, and NaOH is used to selectively etch the interior of the silica spheres. Etching initially yields porous structures and eventually removes the core to leave behind hollow silica spheres with porous shells. This strategy is useful for constructing core-shell systems where active nanomaterials are embedded in silica shell for enhanced stability against aggregation. We experimentally demonstrate use of the surface-protected etching approach to create openings on silica shells; these openings allow dissolved chemical species to reach embedded catalytic particles to be chemically transformed while the porous shells continue to act as effective barriers against aggregation and loss of activity of the core particles. We also show that, by controlling the extent of etching, it is possible to control the permeation rate of the chemical species through the shells.

556 citations

Journal ArticleDOI
TL;DR: Alkali activation of ground granulated blast furnace slag with sodium silicate gave clinker-free binders, with high strength and early strength development, although set times were short and somewhat variable as mentioned in this paper.

545 citations

Journal ArticleDOI
01 Jul 1994
TL;DR: In this paper, the authors show that the unusual interfacial and colloidal properties of silica are due, not to hydration effects, but to the presence of an ∼10-Athick gel-like layer of protruding silanol and silicilic acid groups.
Abstract: Adhesion, friction, and colloidal forces in air and aqueous salt solutions have been measured between various silica surfaces prepared by depositing amorphous but highly smooth silica films on mica. The results show four interesting and interrelated phenomena: (i) The adhesion of silica surfaces in air increases slowly with contact time, especially in humid air where the "contacting" surfaces become separated by an ∼20-A-thick layer of hydrated silica or silica gel. (ii) The friction of two silica surfaces exhibits large sticking or "stiction" spikes, whose magnitude increases in the presence of water and when the surfaces are kept in contact longer before sliding. (iii) The non-DLVO repulsion commonly seen at short range (<40 A) between silica surfaces immersed in aqueous solutions is monotonically repulsive, with no oscillatory component, and is quite unlike theoretical expectations and previous measurements of forces due to solvent structure. (iv) Dynamic contact angle measurements reveal time-dependent effects which cannot be due to a fixed surface chemical heterogeneity or roughness. The results indicate that silica surfaces undergo slow structural and chemical changes during interactions with water and with each other. More specifically, we propose that the unusual interfacial and colloidal properties of silica are due, not to hydration effects, but to the presence of an ∼10-Athick gel-like layer of protruding silanol and silicilic acid groups that grow on the surfaces in the presence of water. These protruding groups react chemically (sinter) with similar groups located on an opposing surface and give rise to the unusual time-dependent adhesion, friction, and non-DLVO forces observed. Concerning the effects on colloidal interactions, the surface gel-layer effectively shifts the OHP outward and adds a monotonic short-range polymer-like steric repulsion to the DLVO interaction. The mechanism proposed here is quite different from the commonly accepted one, in which modified water structure at the silica surface is believed to give rise to a repulsive "hydration force." The proposed mechanism in terms of a surface layer of silica gel is consistent with the known surface chemistry of silica and accounts for the results reported here and also for many other unusual surface and colloidal properties of silica.

543 citations


Network Information
Related Topics (5)
High-performance liquid chromatography
47.3K papers, 1M citations
89% related
Reagent
60K papers, 1.2M citations
85% related
Mass spectrometry
72.2K papers, 2M citations
85% related
Aqueous solution
189.5K papers, 3.4M citations
85% related
Alkyl
223.5K papers, 2M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023140
2022274
2021224
2020426
2019772
2018828