scispace - formally typeset
Search or ask a question
Topic

Silicate minerals

About: Silicate minerals is a research topic. Over the lifetime, 1794 publications have been published within this topic receiving 67064 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, it is suggested that the partial pressure of carbon dioxide in the atmosphere is buffered, over geological time scales, by a negative feedback mechanism, in which the rate of weathering of silicate minerals (followed by deposition of carbonate minerals) depends on surface temperature, which in turn depends on the carbon dioxide partial pressure through the greenhouse effect.
Abstract: It is suggested that the partial pressure of carbon dioxide in the atmosphere is buffered, over geological time scales, by a negative feedback mechanism, in which the rate of weathering of silicate minerals (followed by deposition of carbonate minerals) depends on surface temperature, which in turn depends on the carbon dioxide partial pressure through the greenhouse effect. Although the quantitative details of this mechanism are speculative, it appears able to partially stabilize the earth's surface temperature against the steady increase of solar luminosity, believed to have occurred since the origin of the solar system.

1,837 citations

Journal ArticleDOI
TL;DR: In this article, a simple general equation is presented for estimating the Fe 3 § concentrations in ferromagnesian oxide and silicate minerals from microprobe analyses, assuming that iron is the only element present with variable valency.
Abstract: A simple general equation is presented for estimating the Fe 3 § concentrations in ferromagnesian oxide and silicate minerals from microprobe analyses. The equation has been derived using stoichiometric criteria assuming that iron is the only element present with variable valency and that oxygen is the only anion. In general, the number of Fe 3 + ions per X oxygens in the mineral formula, F, is given by; F = 2X(1 - T/S) where T is the ideal number of cations per formula unit, and S is the observed cation total per X oxygens calculated assuming all iron to be Fe 2 § Minerals for which this equation is appropriate include pyralspite and ugrandite garnet, aluminate spinel, magnetite, pyroxene, sapphirine and ilmenite. The equation cannot be used for minerals with cation vacancies (e.g. micas, maghemite) unless, as in the case of amphiboles, the number of ions of a subset of elements in the formula can be fixed. Variants of the above equation are presented for some of the numerous published schemes for the recalculation of amphibole formulae. The equation is also inappropriate for minerals showing SP += 4H § substitution (e.g. staurolite, hydrogarnet), minerals containing an unknown proportion of an unanalysed element other than oxygen (e.g. boron-bearing kornerupine) and minerals containing two or more elements with variable valency.

1,690 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report systematic changes in mudrock composition through time on a single con- tinental cmstal block and show that the changes reflect both sediment recycling processes and changes through time in the composition of crystalline material being added to the sedimentary system and are related to tectonic evolution as the block matures from a series of accreted arc terranes to a stable craton.

1,155 citations

Journal ArticleDOI
TL;DR: In this article, the correlation between decreasing reaction rates of silicate minerals and increasing duration of chemical weathering was investigated for both experimental and field conditions, and it was shown that intrinsic surface area, which increases with the duration of weathering, was responsible for a third of the exponential decrease in the weathering rate.

991 citations

Journal ArticleDOI
TL;DR: In this article, the authors used thermocalc and its internally consistent thermodynamic dataset to constrain the effect of TiO2 and Fe2O3 on greenschist and amphibolite facies mineral equilibria.
Abstract: Mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 (KFMASHTO) using thermocalc and its internally consistent thermodynamic dataset constrain the effect of TiO2 and Fe2O3 on greenschist and amphibolite facies mineral equilibria in metapelites. The end-member data and activity–composition relationships for biotite and chloritoid, calibrated with natural rock data, and activity–composition data for garnet, calibrated using experimental data, provide new constraints on the effects of TiO2 and Fe2O3 on the stability of these minerals. Thermodynamic models for ilmenite–hematite and magnetite–ulvospinel solid solutions accounting for order–disorder in these phases allow the distribution of TiO2 and Fe2O3 between oxide minerals and silicate minerals to be calculated. The calculations indicate that small to moderate amounts of TiO2 and Fe2O3 in typical metapelitic bulk compositions have little effect on silicate mineral equilibria in metapelites at greenschist to amphibolite facies, compared with those calculated in KFMASH. The addition of large amounts of TiO2 to typical pelitic bulk compositions has little effect on the stability of silicate assemblages; in contrast, rocks rich in Fe2O3 develop a markedly different metamorphic succession from that of common Barrovian sequences. In particular, Fe2O3-rich metapelites show a marked reduction in the stability fields of staurolite and garnet to higher pressures, in comparison to those predicted by KFMASH grids.

954 citations


Network Information
Related Topics (5)
Carbonate
34.8K papers, 802.6K citations
83% related
Zircon
23.7K papers, 786.6K citations
83% related
Basalt
18.6K papers, 805.1K citations
83% related
Metamorphism
18.3K papers, 655.8K citations
82% related
Volcanic rock
19.5K papers, 610.1K citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202344
202264
202153
202064
201951
201865