scispace - formally typeset
Search or ask a question
Topic

Silicate minerals

About: Silicate minerals is a research topic. Over the lifetime, 1794 publications have been published within this topic receiving 67064 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a complete thermodynamically consistent equation of state which includes phase transitions and strength effects has been developed and used to examine shock and release data on quartz and silicate rocks in order to quantify the kinetics of the reverse transition and to separate the hysteretic effects due to reverse phase transition kinetics from those due to material strength.
Abstract: Shock and unloading experiments on quartz and silicate rocks indicate that the release adiabats lie below the Hugoniot. The hysteresis and energy dissipation inherent in this situation have important wave propagation implications. On loading, there is a pressure‐induced transition to the stishovite phase which does not occur under conditions of thermodynamic equilibrium, in that the Hugoniot passes through a metastable mixed‐phase region for several tens of GPa. One interpretation of the unloading data is that the transition is not reversible, and the phase mixture remains frozen on unloading. However, material strength may also play a role. A complete thermodynamically consistent equation of state which includes phase transitions and strength effects has been developed and used to examine shock and release data on quartz and silicate rocks in order to quantify the kinetics of the reverse transition and to separate the hysteretic effects due to reverse phase transition kinetics from those due to material strength. The model allows quantitative determination of the effect of reverse transition kinetics on ground shock propagation in silicate materials.

61 citations

Journal ArticleDOI
TL;DR: In this paper, the authors employed a representation of terrestrial rock weathering in conjunction with the GENIE (Grid ENabled Integrated Earth system) model to elucidate the different time scales of atmospheric CO2 regulation while including the main climate feedbacks on CO2 uptake by the ocean.
Abstract: The ultimate fate of CO2 added to the ocean-atmosphere system is chemical reaction with silicate minerals and burial as marine carbonates. The time scale of this silicate weathering negative feedback on atmospheric pCO2 will determine the duration of perturbations to the carbon cycle, be they geological release events or the current anthropogenic perturbation. However, there has been little previous work on quantifying the time scale of the silicate weathering feedback, with the primary estimate of 300–400 kyr being traceable to an early box model study by Sundquist (1991). Here we employ a representation of terrestrial rock weathering in conjunction with the “GENIE” (Grid ENabled Integrated Earth system) model to elucidate the different time scales of atmospheric CO2 regulation while including the main climate feedbacks on CO2 uptake by the ocean. In this coupled model, the main dependencies of weathering—runoff, temperature, and biological productivity—were driven from an energy-moisture balance atmosphere model and parameterized plant productivity. Long-term projections (1 Myr) were conducted for idealized scenarios of 1000 and 5000 PgC fossil fuel emissions and their sensitivity to different model parameters was tested. By fitting model output to a series of exponentials we determined the e-folding time scale for atmospheric CO2 drawdown by silicate weathering to be ∼240 kyr (range 170–380 kyr), significantly less than existing quantifications. Although the time scales for reequilibration of global surface temperature and surface ocean pH are similar to that for CO2, a much greater proportion of the peak temperature anomaly persists on this longest time scale; ∼21% compared to ∼10% for CO2.

60 citations

Journal ArticleDOI
TL;DR: In this article, electron microprobe for major elements, S and Cl, trace elements and F were determined by SIMS, suggesting successive changes and three distinct fluid compositions with increasing slab depth.
Abstract: Volatile element, major and trace element compositions were measured in glass inclusions in olivine from samples across the Kamchatka arc. Glasses were analyzed in reheated melt inclusions by electron microprobe for major elements, S and Cl, trace elements and F were determined by SIMS. Volatile element–trace element ratios correlated with fluid-mobile elements (B, Li) suggesting successive changes and three distinct fluid compositions with increasing slab depth. The Eastern Volcanic arc Front (EVF) was dominated by fluid highly enriched in B, Cl and chalcophile elements and also LILE (U, Th, Ba, Pb), F, S and LREE (La, Ce). This arc-front fluid contributed less to magmas from the central volcanic zone and was not involved in back arc magmatism. The Central Kamchatka Depression (CKD) was dominated by a second fluid enriched in S and U, showing the highest S/K2O and U/Th ratios. Additionally this fluid was unusually enriched in 87Sr and 18O. In the back arc Sredinny Ridge (SR) a third fluid was observed, highly enriched in F, Li, and Be as well as LILE and LREE. We argue from the decoupling of B and Li that dehydration of different water-rich minerals at different depths explains the presence of different fluids across the Kamchatka arc. In the arc front, fluids were derived from amphibole and serpentine dehydration and probably were water-rich, low in silica and high in B, LILE, sulfur and chlorine. Large amounts of water produced high degrees of melting below the EVF and CKD. Fluids below the CKD were released at a depth between 100 and 200 km due to dehydration of lawsonite and phengite and probably were poorer in water and richer in silica. Fluids released at high pressure conditions below the back arc (SR) probably were much denser and dissolved significant amounts of silicate minerals, and potentially carried high amounts of LILE and HFSE.

60 citations

Journal ArticleDOI
TL;DR: In this paper, a batch experiment was performed to study the sorption and transport properties of Cs+, Sr2+ and Eu3+ on different clay minerals already established to be predominantly kaolinite and montmorillonite.
Abstract: Batch experiments have been performed to study the sorption and transport properties of Cs+, Sr2+ and Eu3+ on different clay minerals already established to be predominantly kaolinite and montmorillonite. The uptake of these radionuclides increases in the order Cs

60 citations

Journal ArticleDOI
TL;DR: In addition to cross-basinal Fe redistribution, Fe minerals also undergo diagenetic redistribution during burial, which does not affect the bulk isotope composition, but complicates the identification of mineral-specific isotope signatures as discussed by the authors.

60 citations


Network Information
Related Topics (5)
Carbonate
34.8K papers, 802.6K citations
83% related
Zircon
23.7K papers, 786.6K citations
83% related
Basalt
18.6K papers, 805.1K citations
83% related
Metamorphism
18.3K papers, 655.8K citations
82% related
Volcanic rock
19.5K papers, 610.1K citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202344
202264
202153
202064
201951
201865