scispace - formally typeset
Search or ask a question

Showing papers on "Silicon published in 2001"


Journal ArticleDOI
TL;DR: In this paper, a review of the literature in the area of alternate gate dielectrics is given, based on reported results and fundamental considerations, the pseudobinary materials systems offer large flexibility and show the most promise toward success.
Abstract: Many materials systems are currently under consideration as potential replacements for SiO2 as the gate dielectric material for sub-0.1 μm complementary metal–oxide–semiconductor (CMOS) technology. A systematic consideration of the required properties of gate dielectrics indicates that the key guidelines for selecting an alternative gate dielectric are (a) permittivity, band gap, and band alignment to silicon, (b) thermodynamic stability, (c) film morphology, (d) interface quality, (e) compatibility with the current or expected materials to be used in processing for CMOS devices, (f) process compatibility, and (g) reliability. Many dielectrics appear favorable in some of these areas, but very few materials are promising with respect to all of these guidelines. A review of current work and literature in the area of alternate gate dielectrics is given. Based on reported results and fundamental considerations, the pseudobinary materials systems offer large flexibility and show the most promise toward success...

5,711 citations


Journal ArticleDOI
TL;DR: The photoluminescence (PL) spectra of undoped ZnO films deposited on Si substrates by dc reactive sputtering have been studied in this paper, where two emission peaks, centered at 3.18 eV and 2.38 eV, were found to correspond to oxide antisite defect OZn rather than oxygen vacancy VO, zinc vacancy VZn, interstitial zinc Zni, and interstitial oxygen Oi.
Abstract: The photoluminescence (PL) spectra of the undoped ZnO films deposited on Si substrates by dc reactive sputtering have been studied. There are two emission peaks, centered at 3.18 eV (UV) and 2.38 eV (green). The variation of these peak intensities and that of the I–V properties of the ZnO/Si heterojunctions were investigated at different annealing temperatures and atmospheres. The defect levels in ZnO films were also calculated using the method of full-potential linear muffin-tin orbital. It is concluded that the green emission corresponds to the local level composed by oxide antisite defect OZn rather than oxygen vacancy VO, zinc vacancy VZn, interstitial zinc Zni, and interstitial oxygen Oi.

1,923 citations


Journal ArticleDOI
TL;DR: In this article, the authors synthesize monodisperse silicon nanowires by exploiting well-defined gold nanoclusters as catalysts for one-dimensional growth via a vapor-liquid-solid mechanism.
Abstract: Monodisperse silicon nanowires were synthesized by exploiting well-defined gold nanoclusters as catalysts for one-dimensional growth via a vapor–liquid–solid mechanism. Transmission electron microscopy studies of the materials grown from 5, 10, 20, and 30 nm nanocluster catalysts showed that the nanowires had mean diameters of 6, 12, 20, and 31 nm, respectively, and were thus well defined by the nanocluster sizes. High-resolution transmission electron microscopy demonstrated that the nanowires have single-crystal silicon cores sheathed with 1–3 nm of amorphous oxide and that the cores remain highly crystalline for diameters as small as 2 nm.

1,232 citations


Journal ArticleDOI
TL;DR: In this paper, the authors summarized recent progress and current scientific understanding of ultrathin (<4 nm) SiO2 and Si-O-N (silicon oxynitride) gate dielectrics on Si-based devices.
Abstract: The outstanding properties of SiO2, which include high resistivity, excellent dielectric strength, a large band gap, a high melting point, and a native, low defect density interface with Si, are in large part responsible for enabling the microelectronics revolution. The Si/SiO2 interface, which forms the heart of the modern metal–oxide–semiconductor field effect transistor, the building block of the integrated circuit, is arguably the worlds most economically and technologically important materials interface. This article summarizes recent progress and current scientific understanding of ultrathin (<4 nm) SiO2 and Si–O–N (silicon oxynitride) gate dielectrics on Si based devices. We will emphasize an understanding of the limits of these gate dielectrics, i.e., how their continuously shrinking thickness, dictated by integrated circuit device scaling, results in physical and electrical property changes that impose limits on their usefulness. We observe, in conclusion, that although Si microelectronic devices...

747 citations


Journal ArticleDOI
TL;DR: In this article, the authors present a review of the charge carrier transport in zinc oxide and show that a physical limit due to ionized impurity scattering is reached for homogeneously doped layers, which can be attributed to the clustering of charge carriers connected with increased scattering due to the Z-2 dependence of the scattering cross section on the charge Z.
Abstract: Heavily doped zinc oxide films are used as transparent and conductive electrodes, especially in thin film solar cells. Despite decades of research on zinc oxide it is not yet clear what the lower limit of the resistivity of such films is. Therefore, the electrical parameters of zinc oxide films deposited by magnetron sputtering, metal organic chemical vapour deposition and pulsed laser ablation are reviewed and related to the deposition parameters. It is found that the lowest resistivities are in the range of 1.4 to 2×10-4 Ω cm, independently of the deposition method. The highest reported Hall mobilities are about 60 cm2 V-1 s-1. The thin film electrical data are compared with the corresponding values of single crystalline zinc oxide and with that of boron and phosphorous doped crystalline silicon. From this comparison it can be seen that the dependence of the Hall mobilities on the carrier concentration n are quite similar for silicon and zinc oxide. In the region n>5×1020 cm-3, which is most important for the application of zinc oxide as a transparent and conductive electrode, phosphorous doped silicon has a mobility only slightly higher than zinc oxide. The experimental data on the electron and hole mobilities in silicon as a function of the impurity concentration have been described by a fit function (Masetti et al 1983), which can also be applied with different fitting parameters to the available zinc oxide mobility data. A comparison of the experimental data with the well known ionized impurity scattering theories of Conwell-Weisskopf (1946) and Brooks-Herring-Dingle (1955) shows that these theories are not able to describe the data very well, even if the non-parabolic band structure is taken into account. As in the case of silicon, an additional reduction of the mobility also occurs for zinc oxide for concentrations n>5×1020 cm-3, which can be ascribed qualitatively to the clustering of charge carriers connected with increased scattering due to the Z-2 dependence of the scattering cross section on the charge Z of the scattering centre. The presented review of the charge carrier transport in zinc oxide indicates that a physical limit due to ionized impurity scattering is reached for homogeneously doped layers. Due to the universal nature of this limitation it is suggested that it also applies to the other important materials indium-tin (ITO) and tin oxide. Experiments are proposed to overcome this limit.

735 citations


Journal ArticleDOI
01 Mar 2001-Polymer
TL;DR: In this paper, a combination of traditional kinetic formal treatments and computer simulation has been made to analyze polydimethylsiloxane (PDMS) thermal degradation, and it was shown that PDMS thermally decomposes to cyclic oligomers through Si-O bond scission in a chain-folded cyclic conformation energetically favored by overlapping of empty silicon d-orbitals with orbitals of oxygen and carbon atoms.

635 citations


Journal ArticleDOI
08 Mar 2001-Nature
TL;DR: The fabrication is described of a silicon light-emitting diode (LED) that operates efficiently at room temperature using standard silicon processing techniques, as boron ion implantation is already used as a standard method for the fabrication of silicon devices.
Abstract: There is an urgent requirement for an optical emitter that is compatible with standard, silicon-based ultra-large-scale integration (ULSI) technology. Bulk silicon has an indirect energy bandgap and is therefore highly inefficient as a light source, necessitating the use of other materials for the optical emitters. However, the introduction of these materials is usually incompatible with the strict processing requirements of existing ULSI technologies. Moreover, as the length scale of the devices decreases, electrons will spend increasingly more of their time in the connections between components; this interconnectivity problem could restrict further increases in computer chip processing power and speed in as little as five years. Many efforts have therefore been directed, with varying degrees of success, to engineering silicon-based materials that are efficient light emitters. Here, we describe the fabrication, using standard silicon processing techniques, of a silicon light-emitting diode (LED) that operates efficiently at room temperature. Boron is implanted into silicon both as a dopant to form a p-n junction, as well as a means of introducing dislocation loops. The dislocation loops introduce a local strain field, which modifies the band structure and provides spatial confinement of the charge carriers. It is this spatial confinement which allows room-temperature electroluminescence at the band-edge. This device strategy is highly compatible with ULSI technology, as boron ion implantation is already used as a standard method for the fabrication of silicon devices.

625 citations


Journal ArticleDOI
23 Aug 2001-Nature
TL;DR: A large increase in silicon light-emitting diode power conversion efficiency is reported to values above 1% near room temperature—close to the values of representative direct bandgap emitters of a little more than a decade ago.
Abstract: Considerable effort is being expended on the development of efficient silicon light-emitting devices compatible with silicon-based integrated circuit technology. Although several approaches are being explored, all presently suffer from low emission efficiencies, with values in the 0.01-0.1% range regarded as high. Here we report a large increase in silicon light-emitting diode power conversion efficiency to values above 1% near room temperature-close to the values of representative direct bandgap emitters of a little more than a decade ago. Our devices are based on normally weak one- and two-phonon assisted sub-bandgap light-emission processes. Their design takes advantage of the reciprocity between light absorption and emission by maximizing absorption at relevant sub-bandgap wavelengths while reducing the scope for parasitic non-radiative recombination within the diode. Each feature individually is shown to improve the emission efficiency by a factor of ten, which accounts for the improvement by a factor of one hundred on the efficiency of baseline devices.

543 citations


Journal ArticleDOI
TL;DR: In this paper, surface microstructuring using laser-chemical etching was used to increase the absorptance of light by silicon to approximately 90% from the near ultraviolet (0.25 μm) to the near infrared (2.5 μm).
Abstract: We increased the absorptance of light by silicon to approximately 90% from the near ultraviolet (0.25 μm) to the near infrared (2.5 μm) by surface microstructuring using laser-chemical etching. The remarkable absorptance most likely comes from a high density of impurities and structural defects in the silicon lattice, enhanced by surface texturing. Microstructured avalanche photodiodes show significant enhancement of below-band-gap photocurrent generation at 1.06 and 1.31 μm, indicating promise for use in infrared photodetectors.

485 citations


Journal ArticleDOI
TL;DR: A new synthetic method was developed to produce robust, highly crystalline, organic-monolayer passivated silicon (Si) nanocrystals in a supercritical fluid by thermally degrading the Si precursor in the presence of octanol.
Abstract: A new synthetic method was developed to produce robust, highly crystalline, organic-monolayer passivated silicon (Si) nanocrystals in a supercritical fluid. By thermally degrading the Si precursor, diphenylsilane, in the presence of octanol at 500 °C and 345 bar, relatively size-monodisperse sterically stabilized Si nanocrystals ranging from 15 to 40 A in diameter could be obtained in significant quantities. Octanol binds to the Si nanocrystal surface through an alkoxide linkage and provides steric stabilization through the hydrocarbon chain. The absorbance and photoluminescence excitation (PLE) spectra of the nanocrystals exhibit a significant blue shift in optical properties from the bulk band gap energy of 1.2 eV due to quantum confinement effects. The stable Si clusters show efficient blue (15 A) or green (25−40 A) band-edge photoemission with luminescence quantum yields up to 23% at room temperature, and electronic structure characteristic of a predominantly indirect transition, despite the extremely...

465 citations


Journal ArticleDOI
TL;DR: The thermal stability, microstructure, and electrical properties of binary oxides were evaluated to help assess their suitability as a replacement for silicon dioxide gate dielectrics in complementary metal-oxide-semiconductor transistors as discussed by the authors.
Abstract: The thermal stability, microstructure, and electrical properties of xZrO2⋅(100−x)SiO2 (ZSO) and xHfO2⋅(100−x)SiO2 (HSO) (x=15%, 25%, 50%, and 75%) binary oxides were evaluated to help assess their suitability as a replacement for silicon dioxide gate dielectrics in complementary metal–oxide–semiconductor transistors. The films were prepared by chemical solution deposition using a solution prepared from a mixture of zirconium, hafnium, and silicon butoxyethoxides dissolved in butoxyethanol. The films were spun onto SiOxNy coated Si wafers and furnace annealed at temperatures from 500 to 1200 °C in oxygen for 30–60 min. The microstructure and electrical properties of ZSO and HSO films were examined as a function of the Zr/Si and Hf/Si ratio and annealing temperature. The films were characterized by x-ray diffraction, mid- and far-Fourier transform infrared (FTIR), Rutherford backscattering spectroscopy, and Auger electron spectroscopy. At ZrO2 or HfO2 concentrations ⩾50%, phase separation and crystallizatio...

Book
01 Jan 2001
TL;DR: In this paper, the basic theory of Semiconductor Electrochemistry is discussed. And the following properties of Silicon/Electrolyte interfaces are discussed: 1.1. Potential and charge distribution in Space Charge Layer. 2.2.
Abstract: 1: Basic Theories of Semiconductor Electrochemistry. 1.1. Introduction. 1.2. Energetics of Semiconductor/Electrolyte Interface. 1.3. Potential and Charge Distribution in Space Charge Layer. 1.4. Kinetics of Charge Transfer. 1.5. Photoeffects. 1.6. Open-Circuit Potential. 1.7. Experimental Techniques. 2: Silicon/Electrolyte Interface. 2.1. Basic Properties of Silicon. 2.2. Thermodynamic Stability in Aqueous Solutions. 2.3. Surface Adsorption. 2.4. Native Oxide. 2.5. Hydrophobic and Hydrophilic Surfaces. 2.6. Surface States. 2.7. Flatband Potentials. 2.8. Open-Circuit Potentials. 3: Anodic Oxide. 3.1. Introduction. 3.2. Types of Oxides. 3.3. Formation of Anodic Oxides. 3.4. Growth Mechanisms. 3.5. Properties. 4: Etching of Oxides. 4.1. Introduction. 4.2. General. 4.3. Thermal Oxide. 4.4. Quartz and Fused Silica. 4.5. Deposited Oxides. 4.6. Anodic Oxides. 4.7. Etching Mechanisms. 5: Anodic Behavior. 5.1. Introduction. 5.2. Current-Potential Relationship. 5.3. Photoeffect. 5.4. Effective Dissolution Valence. 5.5. Hydrogen Evolution. 5.6. Limiting Current. 5.7. Impedance of Interface Layers. 5.8. Tafel Slope and Distribution of Potential. 5.9. Passivation. 5.10. Current Oscillation. 5.11. Participation of Bands and Rate-Limiting Processes. 5.12. Reaction Mechanisms. 6: Cathodic Behavior and Redox Couples. 6.1. Introduction. 6.2. Hydrogen Evolution. 6.3. Metal Deposition. 6.4. Deposition of Silicon. 6.5. Redox Couples. 6.6. Open-Circuit Photovoltage. 6.7. Surface Modification. 7: Etching of Silicon. 7.1. Introduction. 7.2. General. 7.3. Fluoride Solutions. 7.4. Alkaline Solutions. 7.5. Etch Rate Reduction of Heavily Doped Materials. 7.6. Anisotropic Etching. 7.7. Surface Roughness. 7.8. Applications. 8: Porous Silicon. 8.1. Introduction. 8.2. Formation of Porous Silicon. 8.3. Morphology. 8.4. PS Formed at OCP. 8.5. PS Formed under Special Conditions. 8.6. Formation Mechanisms. 8.7. Properties and Applications. 9: Summaries and General Remarks. 9.1. Complexity. 9.2. Surface Condition. 9.3. Oxide Film. 9.4. Sensitivity to Curvature. 9.5. Sensitivity to Lattice Structure. 9.6. Relativity. 9.7. Future Research Interests.

Journal ArticleDOI
TL;DR: In this article, a review of low temperature co-fired ceramic (LTCC) tape materials used in multi-layer packages offers the potential of emulating a great deal of silicon sensor/actuator technology at the meso scale level.
Abstract: For certain applications low temperature co-fired ceramic (LTCC) tape materials used in multi-layer packages offers the potential of emulating a great deal of silicon sensor/actuator technology at the meso scale level. The goal of this review is to describe meso-system technology (MsST) using LTCC, thick film and silicon technologies. A mayor MST application being addressed today is fluid handling for miniaturized chemical analytical systems. For larger MST-3D applications, in the meso-size (from 10 to several hundred microns), it would be desirable to have a material compatible with hybrid microelectronics, with suitable thermal, mechanical and electrical properties, easy to fabricate and inexpensive to process. Such a material is the LTCC tape multilayer system. One of the important features of LTCC technology is the possibility of fabricating 3D structures using multiple layers. In this review, we want to emphasize sensors and actuators for meso-systems exploring LTCC Tape possibilities in the following ways: Sensors for proximity measurement; Fluid media realization of vias, holes, cavities, channels and manifolds; Sensors for flow measurement; Actuators for hybrid microvalves & micropumps. # 2001 Elsevier Science B.V. All rights reserved.

Journal Article
TL;DR: Anisotropic etching characteristics of tetramethyl ammonium hydroxide (TMAH) such as the dependences of the etching rates of (100), (110) and (111) crystal planes on temperature and concentration, the selectivity to SiO 2 and Si 3 N 4, electrochemical etching properties, aluminum etching rate dependences on pH and conductivity and the effect of potassium ion addition are reviewed as mentioned in this paper.
Abstract: Anisotropic etching characteristics of tetramethyl ammonium hydroxide (TMAH) such as the dependences of the etching rates of (100), (110) and (111) crystal planes on temperature and concentration, the selectivity to SiO 2 and Si 3 N 4 , electrochemical etching characteristics, aluminum etching rate dependences on pH and conductivity and the effect of potassium ion addition are reviewed. Furthermore, the preliminary results obtained by the approach using a molecular orbital program are briefly introduced.

Journal ArticleDOI
TL;DR: In this article, a self-organizing diblock copolymer system with semiconductor processing is combined to produce silicon capacitors with increased charge storage capacity over planar structures.
Abstract: We combine a self-organizing diblock copolymer system with semiconductor processing to produce silicon capacitors with increased charge storage capacity over planar structures. Our process uses a diblock copolymer thin film as a mask for dry etching to roughen a silicon surface on a 30 nm length scale, which is well below photolithographic resolution limits. Electron microscopy correlates measured capacitance values with silicon etch depth, and the data agree well with a geometric estimate. This block copolymer nanotemplating process is compatible with standard semiconductor processing techniques and is scalable to large wafer dimensions.

Journal ArticleDOI
TL;DR: In this paper, the authors present an overview on the present status of SiN for industrial as well as laboratory-type c-Si solar cells, including the fundamental properties of Si-Si interfaces fabricated by PECVD.

Journal ArticleDOI
05 Oct 2001-Science
TL;DR: Device-quality copper and nickel films were deposited onto planar and etched silicon substrates by the reduction of soluble organometallic compounds with hydrogen in a supercritical carbon dioxide solution, providing a single-step means for achieving high-aspect-ratio feature fill necessary for copper interconnect structures in future generations of integrated circuits.
Abstract: Device-quality copper and nickel films were deposited onto planar and etched silicon substrates by the reduction of soluble organometallic compounds with hydrogen in a supercritical carbon dioxide solution. Exceptional step coverage on complex surfaces and complete filling of high-aspect-ratio features of less than 100 nanometers width were achieved. Nickel was deposited at 60°C by the reduction of bis(cyclopentadienyl)nickel and copper was deposited from either copper(I) or copper(II) compounds onto the native oxide of silicon or metal nitrides with seed layers at temperatures up to 200°C and directly on each surface at temperatures above 250°C. The latter approach provides a single-step means for achieving high-aspect-ratio feature fill necessary for copper interconnect structures in future generations of integrated circuits.

Journal ArticleDOI
G. Lindström1, M. Ahmed2, Sebastiano Albergo, Phillip Allport3, D.F. Anderson4, Ladislav Andricek5, M. Angarano6, Vincenzo Augelli, N. Bacchetta, P. Bartalini6, Richard Bates7, U. Biggeri, G. M. Bilei6, Dario Bisello, D. Boemi, E. Borchi, T. Botila, T. J. Brodbeck8, Mara Bruzzi, T. Budzyński, P. Burger, Francesca Campabadal9, Gianluigi Casse3, E. Catacchini, A. Chilingarov8, Paolo Ciampolini6, Vladimir Cindro10, M. J. Costa9, Donato Creanza, Paul Clauws11, C. Da Via2, Gavin Davies12, W. De Boer13, Roberto Dell'Orso, M. De Palma, B. Dezillie14, V. K. Eremin, O. Evrard, Giorgio Fallica15, Georgios Fanourakis, H. Feick16, Ettore Focardi, Luis Fonseca9, E. Fretwurst1, J. Fuster9, K. Gabathuler, Maurice Glaser17, Piotr Grabiec, E. Grigoriev13, Geoffrey Hall18, M. Hanlon3, F. Hauler13, S. Heising13, A. Holmes-Siedle2, Roland Horisberger, G. Hughes8, Mika Huhtinen17, I. Ilyashenko, Andrew Ivanov, B.K. Jones8, L. Jungermann13, A. Kaminsky, Z. Kohout19, Gregor Kramberger10, M Kuhnke1, Simon Kwan4, F. Lemeilleur17, Claude Leroy20, M. Letheren17, Z. Li14, Teresa Ligonzo, Vladimír Linhart19, P.G. Litovchenko21, Demetrios Loukas, Manuel Lozano9, Z. Luczynski, Gerhard Lutz5, B. C. MacEvoy18, S. Manolopoulos7, A. Markou, C Martinez9, Alberto Messineo, M. Mikuž10, Michael Moll17, E. Nossarzewska, G. Ottaviani, Val O'Shea7, G. Parrini, Daniele Passeri6, D. Petre, A. Pickford7, Ioana Pintilie, Lucian Pintilie, Stanislav Pospisil19, Renato Potenza, C. Raine7, Joan Marc Rafi9, P. N. Ratoff8, Robert Richter5, Petra Riedler17, Shaun Roe17, P. Roy20, Arie Ruzin22, A.I. Ryazanov23, A. Santocchia18, Luigi Schiavulli, P. Sicho24, I. Siotis, T. J. Sloan8, W. Slysz, Kristine M. Smith7, M. Solanky2, B. Sopko19, K. Stolze, B. Sundby Avset25, B. G. Svensson26, C. Tivarus, Guido Tonelli, Alessia Tricomi, Spyros Tzamarias, Giusy Valvo15, A. Vasilescu, A. Vayaki, E. M. Verbitskaya, Piero Giorgio Verdini, Vaclav Vrba24, Stephen Watts2, Eicke R. Weber16, M. Wegrzecki, I. Węgrzecka, P. Weilhammer17, R. Wheadon, C.D. Wilburn27, I. Wilhelm28, R. Wunstorf29, J. Wüstenfeld29, J. Wyss, K. Zankel17, P. Zabierowski, D. Žontar10 
TL;DR: In this paper, a defect engineering technique was employed resulting in the development of Oxygen enriched FZ silicon (DOFZ), ensuring the necessary O-enrichment of about 2×1017 O/cm3 in the normal detector processing.
Abstract: The RD48 (ROSE) collaboration has succeeded to develop radiation hard silicon detectors, capable to withstand the harsh hadron fluences in the tracking areas of LHC experiments. In order to reach this objective, a defect engineering technique was employed resulting in the development of Oxygen enriched FZ silicon (DOFZ), ensuring the necessary O-enrichment of about 2×1017 O/cm3 in the normal detector processing. Systematic investigations have been carried out on various standard and oxygenated silicon diodes with neutron, proton and pion irradiation up to a fluence of 5×1014 cm−2 (1 MeV neutron equivalent). Major focus is on the changes of the effective doping concentration (depletion voltage). Other aspects (reverse current, charge collection) are covered too and the appreciable benefits obtained with DOFZ silicon in radiation tolerance for charged hadrons are outlined. The results are reliably described by the “Hamburg model”: its application to LHC experimental conditions is shown, demonstrating the superiority of the defect engineered silicon. Microscopic aspects of damage effects are also discussed, including differences due to charged and neutral hadron irradiation.

Patent
22 Feb 2001
TL;DR: In this paper, a conformal capacitor dielectric over textured silicon electrodes for integrated memory cells is presented, where the first electrodes include hemispherical grain (HSG) silicon for increasing the capacitor plate surface area.
Abstract: Method and structures are provided for conformal capacitor dielectrics over textured silicon electrodes for integrated memory cells. Capacitor structures and first electrodes or plates are formed above or within semiconductor substrates. The first electrodes include hemispherical grain (HSG) silicon for increasing the capacitor plate surface area. The HSG topography is then exposed to alternating chemistries to form monolayers of a desired dielectric material. Exemplary process flows include alternately pulsed metal organic and oxygen source gases injected into a constant carrier flow. Self-terminated metal layers are thus reacted with oxygen. Near perfect step coverage allows minimal thickness for a capacitor dielectric, given leakage concerns for particular materials, thereby maximizing the capacitance for the memory cell and increasing cell reliability for a given memory cell design. Alternately pulsed chemistries are also provided for depositing top electrode materials with continuous coverage of capacitor dielectric, realizing the full capacitance benefits of the underlying textured morphology.

Journal ArticleDOI
TL;DR: Analysis of the thermal expansivity of thin polystyrene films on silicon substrates with thicknesses of 10-200 nm finds well-defined glass transitions, and detailed analysis of the expansivities shows that for thinner films the transition width is broadened, while the strength of the transition is reduced.
Abstract: We have used ellipsometry to study the thermal expansivity of thin polystyrene films on silicon substrates with thicknesses of 10--200 nm. We find well-defined glass transitions, and detailed analysis of the expansivities shows that for thinner films the transition width is broadened, while the strength of the transition, defined by the difference between the expansivities in the liquid and glassy state, is reduced; the expansivity in the glassy state is higher than in the bulk. These phenomena are consistent with the idea that a layer of roughly constant thickness, of order 10 nm, near the surface of the film has liquidlike thermal properties at all experimental temperatures.

Journal ArticleDOI
TL;DR: Amorphous silicon quantum dots (a-Si QDs), which show a quantum confinement effect were grown in a silicon nitride film by plasma-enhanced chemical vapor deposition.
Abstract: Amorphous silicon quantum dots (a-Si QDs), which show a quantum confinement effect were grown in a silicon nitride film by plasma-enhanced chemical vapor deposition. Red, green, blue, and white photoluminescence were observed from the a-Si QD structures by controlling the dot size. An orange light-emitting diode (LED) was fabricated using a-Si QDs with a mean size of 2.0 nm. The turn-on voltage was less than 5 V. An external quantum efficiency of 2×10−3% was also demonstrated. These results show that a LED using a-Si QDs embedded in the silicon nitride film is superior in terms of electrical and optical properties to other Si-based LEDs.

Journal ArticleDOI
TL;DR: An overview of recent work on ultrathin (, 100 A) films of metal oxides deposited on silicon for advanced gate dielectrics applications is presented in this article, where the authors illustrate the 23 2 2 2 3 complex processing, integration and device related issues for high dielectric constant ('high-K') materials.

Journal ArticleDOI
TL;DR: In this article, the authors describe electrothermal microactuators that generate rectilinear displacements and forces by leveraging deformations caused by localized thermal stresses, where an electric current is passed through a V-shaped beam anchored at both ends, and thermal expansion caused by joule heating pushes the apex outward.
Abstract: This paper describes electrothermal microactuators that generate rectilinear displacements and forces by leveraging deformations caused by localized thermal stresses. In one manifestation, an electric current is passed through a V-shaped beam anchored at both ends, and thermal expansion caused by joule heating pushes the apex outward. Analytical and finite element models of device performance are presented along with measured results of devices fabricated using electroplated Ni and p/sup ++/ Si as structural materials. A maskless process extension for incorporating thermal and electrical isolation is described. Nickel devices with 410-/spl mu/m-long, 6-/spl mu/m-wide, and 3-/spl mu/m-thick beams demonstrate 10 /spl mu/m static displacements at 79 mW input power; silicon devices with 800-/spl mu/m-long, 13.9-/spl mu/m-wide, and 3.7-/spl mu/m-thick beams demonstrate 5 /spl mu/m displacement at 180 mW input power. Cascaded silicon devices using three beams of similar dimensions offer comparable displacement with 50-60% savings in power consumption. The peak output forces generated are estimated to be in the range from 1 to 10 mN for the single beam devices and from 0.1 to 1 mN for the cascaded devices. Measured bandwidths are /spl ap/700 Hz for both. The typical drive voltages used are /spl les/12 V, permitting the use of standard electronic interfaces that are generally inadequate for electrostatic actuators.

Journal ArticleDOI
TL;DR: In this article, the methods of synthesizing silicon-based materials from rice husks and their applications are reviewed in a very comprehensive manner, including silicon carbide, silica, silicon nitride, silicon tetrachloride, and pure silicon.
Abstract: Rice husk (RH) has now become a source for a number of silicon compounds, including silicon carbide, silica, silicon nitride, silicon tetrachloride, zeolite, and pure silicon. The applications of such materials derived from rice husks are very comprehensive. The methods of synthesizing these silicon-based materials from RHs and their applications are reviewed in this paper.

Journal ArticleDOI
TL;DR: Using the nanotube probes, new biological structures have been investigated in the areas of amyloid-beta protein aggregation and chromatin remodeling, and new biotechnologies have been developed such as AFM-based haplotyping.
Abstract: Atomic force microscopy (AFM) has great potential as a tool for structural biology, a field in which there is increasing demand to characterize larger and more complex biomolecular systems. However, the poorly characterized silicon and silicon nitride probe tips currently employed in AFM limit its biological applications. Carbon nanotubes represent ideal AFM tip materials due to their small diameter, high aspect ratio, large Young's modulus, mechanical robustness, well-defined structure, and unique chemical properties. Nanotube probes were first fabricated by manual assembly, but more recent methods based on chemical vapor deposition provide higher resolution probes and are geared towards mass production, including recent developments that enable quantitative preparation of individual single-walled carbon nanotube tips [J. Phys. Chem. B 105 (2001) 743]. The high-resolution imaging capabilities of these nanotube AFM probes have been demonstrated on gold nanoparticles and well-characterized biomolecules such as IgG and GroES. Using the nanotube probes, new biological structures have been investigated in the areas of amyloid-beta protein aggregation and chromatin remodeling, and new biotechnologies have been developed such as AFM-based haplotyping. In addition to measuring topography, chemically functionalized AFM probes can measure the spatial arrangement of chemical functional groups in a sample. However, standard silicon and silicon nitride tips, once functionalized, do not yield sufficient resolution to allow combined structural and functional imaging of biomolecules. The unique end-group chemistry of carbon nanotubes, which can be arbitrarily modified by established chemical methods, has been exploited for chemical force microscopy, allowing single-molecule measurements with well-defined functionalized tips.

Journal ArticleDOI
14 Sep 2001-Science
TL;DR: Analysis of fundamental, material, device, circuit, and system limits reveals that silicon technology has an enormous remaining potential to achieve terascale integration (TSI) of more than 1 trillion transistors per chip.
Abstract: Throughout the past four decades, silicon semiconductor technology has advanced at exponential rates in both performance and productivity. Concerns have been raised, however, that the limits of silicon technology may soon be reached. Analysis of fundamental, material, device, circuit, and system limits reveals that silicon technology has an enormous remaining potential to achieve terascale integration (TSI) of more than 1 trillion transistors per chip. Such massive-scale integration is feasible assuming the development and economical mass production of double-gate metal-oxide-semiconductor field effect transistors with gate oxide thickness of about 1 nanometer, silicon channel thickness of about 3 nanometers, and channel length of about 10 nanometers. The development of interconnecting wires for these transistors presents a major challenge to the achievement of nanoelectronics for TSI.

Patent
15 May 2001
TL;DR: In this paper, a field emission device has bundles of aligned parallel carbon nanotubes on a substrate, which are oriented perpendicular to the substrate, and can be up to 300 microns tall.
Abstract: A field emission device having bundles of aligned parallel carbon nanotubes on a substrate. The carbon nanotubes are oriented perpendicular to the substrate. The carbon nanotube bundles may be up to 300 microns tall, for example. The bundles of carbon nanotubes extend only from regions of the substrate patterned with a catalyst material. Preferably, the catalyst material is iron oxide. The substrate is preferably porous silicon, as this produces the highest quality, most well-aligned nanotubes. Smooth, nonporous silicon or quartz can also be used as the substrate. The method of the invention starts with forming a porous layer on a silicon substrate by electrochemical etching. Then, a thin layer of iron is deposited on the porous layer in patterned regions. The iron is then oxidized into iron oxide, and then the substrate is exposed to ethylene gas at elevated temperature. The iron oxide catalyzes the formation of bundles of aligned parallel carbon nanotubes which grow perpendicular to the substrate surface. The height of the nanotube bundles above the substrate is determined by the duration of the catalysis step. The nanotube bundles only grow from the patterned regions.

Journal ArticleDOI
TL;DR: In this paper, the influence of strain on the growth morphology is reviewed for the case of heteroepitaxial growth of Ge on Si, and the transition from 2D to 3D growth as well as the evolution of size and shape of three-dimensional islands can be studied.

Journal ArticleDOI
29 Nov 2001-Nature
TL;DR: Pressure-induced amorphization is observed on films of porous Si, which contains nanometre-sized domains of diamond-structured material, and it is found from Raman spectroscopy measurements that the high-density amorphous form obtained by this process transforms to low-densityAmorphous silicon upon decompression.
Abstract: Crystalline and amorphous forms of silicon are the principal materials used for solid-state electronics and photovoltaics technologies. Silicon is therefore a well-studied material, although new structures and properties are still being discovered. Compression of bulk silicon, which is tetrahedrally coordinated at atmospheric pressure, results in a transition to octahedrally coordinated metallic phases. In compressed nanocrystalline Si particles, the initial diamond structure persists to higher pressure than for bulk material, before transforming to high-density crystals. Here we report compression experiments on films of porous Si, which contains nanometre-sized domains of diamond-structured material. At pressures larger than 10 GPa we observed pressure-induced amorphization. Furthermore, we find from Raman spectroscopy measurements that the high-density amorphous form obtained by this process transforms to low-density amorphous silicon upon decompression. This amorphous-amorphous transition is remarkably similar to that reported previously for water, which suggests an underlying transition between a high-density and a low-density liquid phase in supercooled Si (refs 10, 14, 15). The Si melting temperature decreases with increasing pressure, and the crystalline semiconductor melts to a metallic liquid with average coordination approximately 5 (ref. 16).

Journal ArticleDOI
30 Mar 2001-Science
TL;DR: The measured site-dependent attractive short-range force is in good agreement with first-principles calculations of an incipient covalent bond in an analogous model system, demonstrating the ability of atomic force microscopy to provide quantitative, atomic-scale information on surface chemical reactions.
Abstract: We report direct force measurements of the formation of a chemical bond. The experiments were performed using a low-temperature atomic force microscope, a silicon tip, and a silicon (111) 7×7 surface. The measured site-dependent attractive short-range force, which attains a maximum value of 2.1 nanonewtons, is in good agreement with first-principles calculations of an incipient covalent bond in an analogous model system. The resolution was sufficient to distinguish differences in the interaction potential between inequivalent adatoms, demonstrating the ability of atomic force microscopy to provide quantitative, atomic-scale information on surface chemical reactivity.