scispace - formally typeset
Search or ask a question

Showing papers on "Silicon published in 2006"


Journal ArticleDOI
Jie Xiang1, Wei Lu1, Yongjie Hu1, Yue Wu1, Hao Yan1, Charles M. Lieber1 
25 May 2006-Nature
TL;DR: Comparison of the intrinsic switching delay, τ = CV/I, shows that the performance of Ge/Si NWFETs is comparable to similar length carbon nanotube FETs and substantially exceeds the length-dependent scaling of planar silicon MOSFets.
Abstract: Field-effect transistors (FETs) based on semi-conductor nanowires could one day replace standard silicon MOSFETs in miniature electronic circuits. MOSFETs, or metal-oxide semiconductor field-effect transistors, are a type of transistor used for high-speed switching and in a computer's integrated circuits. A specially designed nanowire with a germanium shell and silicon core has shown promise as a nanometre-scale field-effect transistor: it has a near-perfect channel for electronic conduction. Now, in transistor configuration, this germanium/silicon nanowire is shown to have properties including high conductance and short switching time delay that are better than state-of-the-art silicon MOSFETs. In a transistor configuration, a new germanium/silicon nanowire has characteristics such as conductance, on-current and switching time delay that are better than those of state-of-the-art silicon metal-oxide-semiconductor field-effect transitors. Semiconducting carbon nanotubes1,2 and nanowires3 are potential alternatives to planar metal-oxide-semiconductor field-effect transistors (MOSFETs)4 owing, for example, to their unique electronic structure and reduced carrier scattering caused by one-dimensional quantum confinement effects1,5. Studies have demonstrated long carrier mean free paths at room temperature in both carbon nanotubes1,6 and Ge/Si core/shell nanowires7. In the case of carbon nanotube FETs, devices have been fabricated that work close to the ballistic limit8. Applications of high-performance carbon nanotube FETs have been hindered, however, by difficulties in producing uniform semiconducting nanotubes, a factor not limiting nanowires, which have been prepared with reproducible electronic properties in high yield as required for large-scale integrated systems3,9,10. Yet whether nanowire field-effect transistors (NWFETs) can indeed outperform their planar counterparts is still unclear4. Here we report studies on Ge/Si core/shell nanowire heterostructures configured as FETs using high-κ dielectrics in a top-gate geometry. The clean one-dimensional hole-gas in the Ge/Si nanowire heterostructures7 and enhanced gate coupling with high-κ dielectrics give high-performance FETs values of the scaled transconductance (3.3 mS µm-1) and on-current (2.1 mA µm-1) that are three to four times greater than state-of-the-art MOSFETs and are the highest obtained on NWFETs. Furthermore, comparison of the intrinsic switching delay, τ = CV/I, which represents a key metric for device applications4,11, shows that the performance of Ge/Si NWFETs is comparable to similar length carbon nanotube FETs and substantially exceeds the length-dependent scaling of planar silicon MOSFETs.

1,454 citations


Journal ArticleDOI
TL;DR: In this article, thin films of silicon-doped Fe2O3 were deposited by APCVD (atmospheric pressure chemical vapor deposition) from Fe(CO)5 and TEOS (tetraethoxysilane) on SnO2-coated glass at 415 °C.
Abstract: Thin films of silicon-doped Fe2O3 were deposited by APCVD (atmospheric pressure chemical vapor deposition) from Fe(CO)5 and TEOS (tetraethoxysilane) on SnO2-coated glass at 415 °C. HRSEM reveals a highly developed dendritic nanostructure of 500 nm thickness having a feature size of only 10−20 nm at the surface. Real surface area determination by dye adsorption yields a roughness factor of 21. XRD shows the films to be pure hematite with strong preferential orientation of the [110] axis vertical to the substrate, induced by silicon doping. Under illumination in 1 M NaOH, water is oxidized at the Fe2O3 electrode with higher efficiency (IPCE = 42% at 370 nm and 2.2 mA/cm2 in AM 1.5 G sunlight of 1000 W/m2 at 1.23 VRHE) than at the best reported single crystalline Fe2O3 electrodes. This unprecedented efficiency is in part attributed to the dendritic nanostructure which minimizes the distance photogenerated holes have to diffuse to reach the Fe2O3/electrolyte interface while still allowing efficient light abso...

1,442 citations


Journal ArticleDOI
30 Mar 2006-Nature
TL;DR: The identification of a silicon transporter provides both an insight into the silicon uptake system in plants, and a new strategy for producing crops with high resistance to multiple stresses by genetic modification of the root's silicon uptake capacity.
Abstract: Silicon is beneficial to plant growth and helps plants to overcome abiotic and biotic stresses by preventing lodging (falling over) and increasing resistance to pests and diseases, as well as other stresses. Silicon is essential for high and sustainable production of rice, but the molecular mechanism responsible for the uptake of silicon is unknown. Here we describe the Low silicon rice 1 (Lsi1) gene, which controls silicon accumulation in rice, a typical silicon-accumulating plant. This gene belongs to the aquaporin family and is constitutively expressed in the roots. Lsi1 is localized on the plasma membrane of the distal side of both exodermis and endodermis cells, where casparian strips are located. Suppression of Lsi1 expression resulted in reduced silicon uptake. Furthermore, expression of Lsi1 in Xenopus oocytes showed transport activity for silicon only. The identification of a silicon transporter provides both an insight into the silicon uptake system in plants, and a new strategy for producing crops with high resistance to multiple stresses by genetic modification of the root's silicon uptake capacity.

1,398 citations


Journal ArticleDOI
TL;DR: An electrically pumped AlGaInAs-silicon evanescent laser architecture where the laser cavity is defined solely by the silicon waveguide and needs no critical alignment to the III-V active material during fabrication via wafer bonding is reported.
Abstract: An electrically pumped light source on silicon is a key element needed for photonic integrated circuits on silicon. Here we report an electrically pumped AlGaInAs-silicon evanescent laser architecture where the laser cavity is defined solely by the silicon waveguide and needs no critical alignment to the III-V active material during fabrication via wafer bonding. This laser runs continuous-wave (c.w.) with a threshold of 65 mA, a maximum output power of 1.8 mW with a differential quantum efficiency of 12.7 % and a maximum operating temperature of 40 degrees C. This approach allows for 100's of lasers to be fabricated in one bonding step, making it suitable for high volume, low-cost, integration. By varying the silicon waveguide dimensions and the composition of the III-V layer, this architecture can be extended to fabricate other active devices on silicon such as optical amplifiers, modulators and photo-detectors.

1,257 citations


Journal ArticleDOI
02 Mar 2006-Nature
TL;DR: The results show that the silicon nanowire growth is fundamentally limited by gold diffusion: smooth, arbitrarily long nanowires cannot be grown without eliminating gold migration.
Abstract: Silicon nanowires hold great promise as components of tiny electronic devices, but the usual method of growing them is poorly understood. New work shows that excessive cleanliness can actually stunt a nanowire's growth. They are made by the ‘vapour–liquid–solid’ method, in which a tiny liquid droplet of a metal such as gold absorbs silicon atoms from a gaseous precursor molecule. As the droplet saturates with silicon, it grows a solid, cylindrical silicon crystal whose diameter is determined by the size of the droplet. But in conditions of extreme cleanliness, gold atoms from the droplet can migrate over the surface of the growing nanowire, resulting in misshapen structures. Interest in nanowires continues to grow, fuelled in part by applications in nanotechnology1,2,3,4,5. The ability to engineer nanowire properties makes them especially promising in nanoelectronics6,7,8,9. Most silicon nanowires are grown using the vapour–liquid–solid (VLS) mechanism, in which the nanowire grows from a gold/silicon catalyst droplet during silicon chemical vapour deposition10,11,12,13. Despite over 40 years of study, many aspects of VLS growth are not well understood. For example, in the conventional picture the catalyst droplet does not change during growth, and the nanowire sidewalls consist of clean silicon facets10,11,12,13. Here we demonstrate that these assumptions are false for silicon nanowires grown on Si(111) under conditions where all of the experimental parameters (surface structure, gas cleanliness, and background contaminants) are carefully controlled. We show that gold diffusion during growth determines the length, shape, and sidewall properties of the nanowires. Gold from the catalyst droplets wets the nanowire sidewalls, eventually consuming the droplets and terminating VLS growth. Gold diffusion from the smaller droplets to the larger ones (Ostwald ripening) leads to nanowire diameters that change during growth. These results show that the silicon nanowire growth is fundamentally limited by gold diffusion: smooth, arbitrarily long nanowires cannot be grown without eliminating gold migration.

879 citations


Journal ArticleDOI
TL;DR: In this paper, an engineered enhancement in short-circuit current density and energy conversion efficiency in amorphous silicon p-i-n solar cells was achieved via improved transmission of electromagnetic radiation arising from forward scattering by surface plasmon polariton modes in Au nanoparticles deposited above the polysilicon film.
Abstract: An engineered enhancement in short-circuit current density and energy conversion efficiency in amorphous silicon p-i-n solar cells is achieved via improved transmission of electromagnetic radiation arising from forward scattering by surface plasmon polariton modes in Au nanoparticles deposited above the amorphous silicon film. For a Au nanoparticle density of ∼3.7×108cm−2, an 8.1% increase in short-circuit current density and an 8.3% increase in energy conversion efficiency are observed. Finite-element electromagnetic simulations confirm the expected increase in transmission of electromagnetic radiation at visible wavelengths, and suggest that substantially larger improvements should be attainable for higher nanoparticle densities.

795 citations


Journal ArticleDOI
TL;DR: The morphology of the alpha-Fe2O3 was strongly influenced by the silicon doping, decreasing the feature size of the mesoscopic film, and the best performing photoanode would yield a solar-to-chemical conversion efficiency of 2.1% in a tandem device using two dye-sensitized solar cells in series.
Abstract: Thin, silicon-doped nanocrystalline α-Fe2O3 films have been deposited on F-doped SnO2 substrates by ultrasonic spray pyrolysis and chemical vapor deposition at atmospheric pressure. The photocatalytic activity of these films with regard to photoelectrochemical water oxidation was measured at pH 13.6 under simulated AM 1.5 global sunlight. The photoanodes prepared by USP and APCVD gave 1.17 and 1.45 mA/cm2, respectively, at 1.23 V vs RHE. The morphology of the α-Fe2O3 was strongly influenced by the silicon doping, decreasing the feature size of the mesoscopic film. The silicon-doped α-Fe2O3 nano-leaflets show a preferred orientation with the (001) basal plane normal to the substrate. The best performing photoanode would yield a solar-to-chemical conversion efficiency of 2.1% in a tandem device using two dye-sensitized solar cells in series.

754 citations


Journal Article
TL;DR: In this paper, the authors provide an overview of the state of the art in silicon photonics and outline challenges that must be overcome before large-scale commercialization can occur, in particular, for realization of integration with CMOS very large scale integration (VLSI) and must operate within thermal constraints of VLSI chips.
Abstract: After dominating the electronics industry for decades, silicon is on the verge of becoming the material of choice for the photonics industry: the traditional stronghold of III-V semiconductors. Stimulated by a series of recent breakthroughs and propelled by increasing investments by governments and the private sector, silicon photonics is now the most active discipline within the field of integrated optics. This paper provides an overview of the state of the art in silicon photonics and outlines challenges that must be overcome before large-scale commercialization can occur. In particular, for realization of integration with CMOS very large scale integration (VLSI), silicon photonics must be compatible with the economics of silicon manufacturing and must operate within thermal constraints of VLSI chips. The impact of silicon photonics will reach beyond optical communication-its traditionally anticipated application. Silicon has excellent linear and nonlinear optical properties in the midwave infrared (IR) spectrum. These properties, along with silicon's excellent thermal conductivity and optical damage threshold, open up the possibility for a new class of mid-IR photonic devices

701 citations


Journal ArticleDOI
TL;DR: The state-of-the-art surface passivation of c-Si solar cells is achieved by Al2O3 films prepared by plasma-assisted atomic layer deposition, yielding effective surface recombination velocities of 2 and 13cm∕s on low resistivity n- and p-type cSi, respectively as mentioned in this paper.
Abstract: Excellent surface passivation of c-Si has been achieved by Al2O3 films prepared by plasma-assisted atomic layer deposition, yielding effective surface recombination velocities of 2 and 13cm∕s on low resistivity n- and p-type c-Si, respectively. These results obtained for ∼30nm thick Al2O3 films are comparable to state-of-the-art results when employing thermal oxide as used in record-efficiency c-Si solar cells. A 7nm thin Al2O3 film still yields an effective surface recombination velocity of 5cm∕s on n-type silicon.

697 citations


Journal ArticleDOI
TL;DR: The Liu Institute for Superconducting & Electronic Materials and ARC Centre of Excellence for Electromaterials Science, University of Wollongong, NSW 2522 (Australia) is grateful to SauYen Chew for experimental assistance.
Abstract: [*] S.-H. Ng, Dr. J. Wang, Dr. K. Konstantinov, Dr. Z.-P. Guo, Prof. H.-K. Liu Institute for Superconducting & Electronic Materials and ARC Centre of Excellence for Electromaterials Science University of Wollongong Wollongong, NSW 2522 (Australia) Fax: (+61)2-4221-5731 E-mail: hua_liu@uow.edu.au Homepage: http://www.uow.edu.au/eng/research/isem/staff/ hkliu.html Dr. D. Wexler Faculty of Engineering University of Wollongong Wollongong, NSW 2522 (Australia) [**] Financial support provided by the Australian Research Council (ARC) through the ARC Centre of Excellence funding (CE0561616) is gratefully acknowledged. Moreover, the authors are grateful to SauYen Chew at the University of Wollongong for experimental assistance. Finally, we also thank Dr. Tania Silver at the University of Wollongong for critical reading of the manuscript. Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author. Communications

676 citations


Journal ArticleDOI
11 May 2006-Nature
TL;DR: The strain-induced linear electro-optic effect may be used to remove a bottleneck in modern computers by replacing the electronic bus with a much faster optical alternative.
Abstract: For decades, silicon has been the material of choice for mass fabrication of electronics. This is in contrast to photonics, where passive optical components in silicon have only recently been realized. The slow progress within silicon optoelectronics, where electronic and optical functionalities can be integrated into monolithic components based on the versatile silicon platform, is due to the limited active optical properties of silicon. Recently, however, a continuous-wave Raman silicon laser was demonstrated; if an effective modulator could also be realized in silicon, data processing and transmission could potentially be performed by all-silicon electronic and optical components. Here we have discovered that a significant linear electro-optic effect is induced in silicon by breaking the crystal symmetry. The symmetry is broken by depositing a straining layer on top of a silicon waveguide, and the induced nonlinear coefficient, chi(2) approximately 15 pm V(-1), makes it possible to realize a silicon electro-optic modulator. The strain-induced linear electro-optic effect may be used to remove a bottleneck in modern computers by replacing the electronic bus with a much faster optical alternative.

Journal ArticleDOI
TL;DR: In this article, a novel strategy for preparing large-area oriented silicon nanowire arrays on silicon substrates at near room temperature by localized chemical etching is presented, which is based on metal-induced (either by Ag or Au) excessive local oxidation and dissolution of a silicon substrate in an aqueous fluoride solution.
Abstract: A novel strategy for preparing large-area, oriented silicon nanowire (SiNW) arrays on silicon substrates at near room temperature by localized chemical etching is presented. The strategy is based on metal-induced (either by Ag or Au) excessive local oxidation and dissolution of a silicon substrate in an aqueous fluoride solution. The density and size of the as-prepared SiNWs depend on the distribution of the patterned metal particles on the silicon surface. High-density metal particles facilitate the formation of silicon nanowires. Well-separated, straight nanoholes are dug along the Si block when metal particles are well dispersed with a large space between them. The etching technique is weakly dependent on the orientation and doping type of the silicon wafer. Therefore, SiNWs with desired axial crystallographic orientations and doping characteristics are readily obtained. Detailed scanning electron microscopy observations reveal the formation process of the silicon nanowires, and a reasonable mechanism is proposed on the basis of the electrochemistry of silicon and the experimental results.

Journal ArticleDOI
Nam-Soon Choi1, Kyoung Han Yew1, Kyu Youl Lee1, Min-Seok Sung1, Ho Kim1, Sung-Soo Kim1 
TL;DR: In this paper, a silicon thin-film electrode (thickness = 200nm) is prepared by E-beam evaporation and deposition on copper foil, and the electrochemical performance of a lithium/silicon thinfilm cell is investigated in ethylene carbonate/diethyl carbonate 1.3m LiPF 6 with and without 3.5% fluoroethylene carbonate (FEC).

Journal ArticleDOI
TL;DR: In this article, the authors describe an experimental study of thermal contact conductance enhancement enabled by carbon nanotube (CNT) arrays synthesized directly on silicon wafers using plasma-enhanced chemical vapor deposition.

BookDOI
15 Sep 2006
TL;DR: In this paper, the authors present a characterization of thin-film crystalline Si solar cells on low-cost Si carriers, and present a model for charge carrier photogeneration in doped and blended organic semiconductors.
Abstract: Series Preface. Preface. 1. Epitaxial thin-film crystalline Si solar cells on low-cost Si carriers (Jef Poortmans). 2.Crystalline Silicon Thin-Film Solar Cells on Foreign Substrates by High-Temperature Deposition and Recrystallization (Stefan Reber and Thomas Kieliba). 3. Thin-film polycrystalline Si solar cells (Guy Beaucarne and Abdellilah Slaoui). 4. Advances in microcrystalline silicon solar cell technologies (Evelyne Vallat-Sauvain, Arvind Shah and Julien Bailat). 5. Advanced Amorphous Silicon Solar Cell Technologies (Miro Zeman). 6. Chalcopyrite Based Solar Cells (Martha Ch. Lux-Steiner). 7. CdTe Thin Film Solar Cells: Characterization, Fabrication and Modelling (Marc Burgelman). 8.Charge carrier photogeneration in doped and blended organicSemiconductors (V. I. Arkhipov and H. Bassler). 9. Nanocrystalline Injection Solar Cells (Michael Gratzel). 10. Charge Transport and Recombination in Donor-Acceptor Bulk Heterojunction Solar Cells (A. J. Mozer and N. S. Sariciftci). 11. The Terawatt Challenge for Thin Film PV (Ken Zweibel).

Journal ArticleDOI
TL;DR: In this article, a wet chemical process for nanoscale texturing of Si surfaces is presented, which results in an almost complete suppression of the reflectivity in a broad spectral range, leading to black Si surfaces.
Abstract: We present a wet chemical process for nanoscale texturing of Si surfaces, which results in an almost complete suppression of the reflectivity in a broad spectral range, leading to black Si surfaces. The process affects only the topmost 200–300nm of the material and is independent of the surface orientation and doping. Thus, it can be applied to various structural forms of bulk silicon (single, poly-, or multicrystalline) as well as to thin Si films (amorphous or microcrystalline). The optical properties of various black Si samples are presented and discussed in correlation with the surface morphology.

Journal ArticleDOI
TL;DR: In this article, a fabrication method for carbon nanotube thin films on various substrates including PET (polyethylene terephthalate), glass, polymethyl-methacrylate (PMMA), and silicon is described.
Abstract: This paper describes a fabrication method for carbon nanotube thin films on various substrates including PET (polyethylene terephthalate), glass, polymethyl-methacrylate (PMMA), and silicon. The method combines a polydimethysiloxane (PDMS) based transfer-printing technique with vacuum filtration, and allows controlled deposition—and patterning if needed—of large area highly conducting carbon nanotube films with high homogeneity. In the visible and infrared range, the performance characteristics of fabricated films are comparable to that of indium tin oxide (ITO) on flexible substrates.

Journal ArticleDOI
19 Apr 2006-Langmuir
TL;DR: The method consists of irradiating silicon wafers with femtosecond laser pulses and then coating the surfaces with a layer of fluoroalkylsilane molecules, which creates a surface morphology that exhibits structure on the micro- and nanoscale.
Abstract: We present a simple method for fabricating superhydrophobic silicon surfaces. The method consists of irradiating silicon wafers with femtosecond laser pulses and then coating the surfaces with a layer of fluoroalkylsilane molecules. The laser irradiation creates a surface morphology that exhibits structure on the micro- and nanoscale. By varying the laser fluence, we can tune the surface morphology and the wetting properties. We measured the static and dynamic contact angles for water and hexadecane on these surfaces. For water, the microstructured silicon surfaces yield contact angles higher than 160° and negligible hysteresis. For hexadecane, the microstructuring leads to a transition from nonwetting to wetting.

Journal ArticleDOI
TL;DR: In this paper, the authors reported the plasma synthesis of silicon quantum dots and their subsequent wet-chemical surface passivation with organic ligands under strict exclusion of oxygen, achieving photoluminescence quantum yields exceeding 60% at peak wavelengths of about 789nm.
Abstract: Silicon nanocrystals with diameters of less than 5nm show efficient photoluminescence at room temperature. For ensembles of silicon quantum dots, previous reports of photoluminescence quantum yields have usually been in the few percent range, and generally less than 30%. Here we report the plasma synthesis of silicon quantum dots and their subsequent wet-chemical surface passivation with organic ligands under strict exclusion of oxygen. Photoluminescence quantum yields exceeding 60% have been achieved at peak wavelengths of about 789nm.

Patent
20 Jun 2006
TL;DR: In this paper, the UV photoexcitation process is used to remove native oxides prior to deposition, removing volatiles from deposited films, increasing surface energy of the deposited films and increasing the excitation energy of precursors.
Abstract: Embodiments of the invention generally provide a method for depositing films or layers using a UV source during a photoexcitation process. The films are deposited on a substrate and usually contain a material, such as silicon (e.g., epitaxy, crystalline, microcrystalline, polysilicon, or amorphous), silicon oxide, silicon nitride, silicon oxynitride, or other silicon-containing materials. The photoexcitation process may expose the substrate and/or gases to an energy beam or flux prior to, during, or subsequent a deposition process. Therefore, the photoexcitation process may be used to pre-treat or post-treat the substrate or material, to deposit the silicon-containing material, and to enhance chamber cleaning processes. Attributes of the method that are enhanced by the UV photoexcitation process include removing native oxides prior to deposition, removing volatiles from deposited films, increasing surface energy of the deposited films, increasing the excitation energy of precursors, reducing deposition time, and reducing deposition temperature.

Journal ArticleDOI
06 Apr 2006-Nature
TL;DR: The solution processing of silicon thin-film transistors (TFTs) using a silane-based liquid precursor is demonstrated, which shows mobilities greater than those achieved in solution-processed organic TFTs and they exceed those of a-Si T FTs.
Abstract: The manufacture of silicon semiconductor devices involves complicated photolithography and expensive machinery, so many researchers are seeking alternative semiconductor materials that can be handled by simple processes such as spin-coating or printing. Organic semiconductors are the most promising candidates but they still lack performance and reliability. Shimoda et al. have taken a different approach, printing a silicon transistor itself, not a substitute. They successfully fabricated polycrystalline silicon transistors by spin-coating a novel liquid precursor. This solution-based approach can also be adapted for ‘ink-jet’ printing of transistors. The development of a process whereby silicon can be prepared from a liquid allows the printing of semiconductor devices directly from solution. The use of solution processes—as opposed to conventional vacuum processes and vapour-phase deposition—for the fabrication of electronic devices has received considerable attention for a wide range of applications1,2,3,4,5,6,7, with a view to reducing processing costs. In particular, the ability to print semiconductor devices using liquid-phase materials could prove essential for some envisaged applications, such as large-area flexible displays. Recent research in this area has largely been focused on organic semiconductors8,9,10,11, some of which have mobilities comparable to that of amorphous silicon11 (a-Si); but issues of reliability remain. Solution processing of metal chalcogenide semiconductors to fabricate stable and high-performance transistors has also been reported12,13. This class of materials is being explored as a possible substitute for silicon, given the complex and expensive manufacturing processes required to fabricate devices from the latter. However, if high-quality silicon films could be prepared by a solution process, this situation might change drastically. Here we demonstrate the solution processing of silicon thin-film transistors (TFTs) using a silane-based liquid precursor. Using this precursor, we have prepared polycrystalline silicon (poly-Si) films by both spin-coating and ink-jet printing, from which we fabricate TFTs with mobilities of 108 cm2 V-1 s-1 and 6.5 cm2 V-1 s-1, respectively. Although the processing conditions have yet to be optimized, these mobilities are already greater than those that have been achieved in solution-processed organic TFTs, and they exceed those of a-Si TFTs (≤ 1 cm2 V-1 s-1).

Journal ArticleDOI
TL;DR: In this article, the Si rib-membrane waveguide offers low-loss transmission from 12 t o6 µ m to 2 4t o 100 µm, which is compatible with Si microelectronics manufacturing, by etching away the oxide locally beneath the rib and employing a crystal Ge rib grown directly upon the Si substrate.
Abstract: We propose that the operational wavelength of waveguided Si-based photonic integrated circuits and optoelectronic integrated circuits can be extended beyond the 155 µ mt elecom range into the wide infrared from 155 to 100 µm The Si rib-membrane waveguide offers low-loss transmission from 12 t o6 µ ma nd from 2 4t o 100µm This waveguide, which is compatible with Si microelectronics manufacturing, is constructed from silicon-on-insulator by etching away the oxide locally beneath the rib Alternatively, low-loss waveguiding from 19 to 147 µ mi s assured by employing a crystal Ge rib grown directly upon the Si substrate The Si-based hollow-core waveguide is an excellent device that minimizes loss due to silicon’s 6–24 µ mm ulti-phonon absorption Here the rectangular air-filled core is surrounded by SiGe/Si multi-layer anti-resonant or Bragg claddings The hollow channel offers less than 1 7d B cm −1 loss from 12 to 100 µm

Journal ArticleDOI
08 Aug 2006-Nature
TL;DR: The high-yield synthesis and characteristics of germanium with the empty clathrate-II structure through the oxidation of Zintl anions in ionic liquids under ambient conditions is reported, demonstrating the potential of ionics liquids as media for the reactions of polar intermetallic phases.
Abstract: Germanium as you have never seen it before. This newly synthesized modification of germanium is a low density empty (guest-free) framework structure, or clathrate. It was produced using a novel preparation route for intermetallic compounds that exploits an ionic liquid as a reaction medium. Interest in such frameworks lies in particular in their potential as materials for optoelectronic devices. The structural, chemical and physical characterization of a low-density, empty germanium framework structure, or clathrate, synthesized using a new route exploiting an ionic liquid as a reaction medium is described. The challenges associated with synthesizing expanded semiconductor frameworks with cage-like crystal structures continue to be of interest1,2. Filled low-density germanium and silicon framework structures have distinct properties that address important issues in thermoelectric phonon glass–electron crystals3, superconductivity4 and the possibility of Kondo insulators5. Interest in empty framework structures of silicon and germanium is motivated by their predicted wide optical bandgaps of the same magnitude as quantum dots and porous silicon, making them and their alloys promising materials for silicon-based optoelectronic devices6,7. Although almost-empty Na1-xSi136 has already been reported8,9, the synthesis of guest-free germanium clathrate has so far been unsuccessful. Here we report the high-yield synthesis and characteristics of germanium with the empty clathrate-II structure through the oxidation of Zintl anions in ionic liquids under ambient conditions. The approach demonstrates the potential of ionic liquids as media for the reactions of polar intermetallic phases.

Journal ArticleDOI
TL;DR: In this paper, the effect of the elements on physical phenomena such as laser absorption, heat transfer, wetting and spreading of the melt, oxidation, Rayleigh instability and Marangoni convection was investigated.

Journal ArticleDOI
TL;DR: In this paper, the bulk preparation of nanocrystalline Si−SiO2 composites via straightforward reductive thermal annealing of a well-defined molecular precursor, hydrogen silsesquioxane, is reported.
Abstract: We report the bulk preparation of nanocrystalline Si−SiO2 (nc-Si/SiO2) composites via straightforward reductive thermal annealing of a well-defined molecular precursor, hydrogen silsesquioxane. The presented method affords quantitative yields of composite powders in large quantities. Freestanding, hydride-surface-terminated silicon nanocrystals that photoluminesce throughout the visible spectrum are readily liberated from nc-Si/SiO2 composite powders upon etching in ethanol−water solutions of hydrofluoric acid. Composites and freestanding particles were characterized using transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectroscopy, Fourier transform infrared spectroscopy (FT−IR), and thermogravimetric analysis (TGA).

Journal ArticleDOI
TL;DR: In this paper, two different boron and oxygen-related recombination centers are found to be activated in crystalline silicon under illumination or electron injection in the dark, both leading to a severe degradation in the carrier lifetime.
Abstract: Two different boron- and oxygen-related recombination centers are found to be activated in crystalline silicon under illumination or electron injection in the dark, both leading to a severe degradation in the carrier lifetime. While one center forms on a time scale of seconds to minutes, the formation of the second center typically proceeds within hours. In order to reveal the electronic and microscopic properties of both defect centers as well as their formation and annihilation kinetics, we perform time-resolved lifetime measurements on silicon wafers and open-circuit voltage measurements on silicon solar cells at various temperatures. Despite the fact that the two centers are found to form independently of each other, their concentrations exhibit the same linear dependence on the substitutional boron (Bs) and quadratic dependence on the interstitial oxygen (Oi) content. Our results suggest that the fast- and the slowly forming recombination centers correspond to two different configurations of a BsO2i ...

Journal ArticleDOI
Richard M. Swanson1
TL;DR: In this paper, the authors discuss the driving forces behind the continued strength of crystalline silicon technology and discuss the barriers that have inhibited the emergence of competing technologies, along with the steps that need to be taken to surmount those barriers.
Abstract: This paper discusses the driving forces behind the continued strength of crystalline silicon technology. The history of silicon technology development is reviewed, and projections made as where to silicon technology is likely to go in the following 10 years. Next the barriers that have inhibited the emergence of competing technologies are discussed, along with the steps that need to be taken to surmount those barriers. Copyright © 2006 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: In this article, a low cost nanosphere lithography method for patterning and generation of semiconductor nanostructures provides a potential alternative to the conventional top-down fabrication techniques.
Abstract: A low cost nanosphere lithography method for patterning and generation of semiconductor nanostructures provides a potential alternative to the conventional top-down fabrication techniques. Forests of silicon pillars of sub-500 nm diameter and with an aspect ratio up to 10 were fabricated using a combination of the nanosphere lithography and deep reactive ion etching techniques. The nanosphere etch mask coated silicon substrates were etched using oxygen plasma and a time-multiplexed 'Bosch' process to produce nanopillars of different length, diameter and separation. Scanning electron microscopy data indicate that the silicon etch rates with the nanoscale etch masks decrease linearly with increasing aspect ratio of the resulting etch structures.

Journal ArticleDOI
TL;DR: In this article, an alternative solution containing tetramethyl ammonium hydroxide ((CH 3 ) 4 NOH, TMAH ) was investigated to obtain uniform and reliable pyramidal texturization on different silicon surfaces (as cut, etched and polished).

Proceedings ArticleDOI
TL;DR: In this paper, the absolute refractive index of multiple prisms of these two materials using the Cryogenic, High-Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, as a function of both wavelength and temperature, was measured.
Abstract: Silicon and germanium are perhaps the two most well-understood semiconductor materials in the context of solid state device technologies and more recently micromachining and nanotechnology. Meanwhile, these two materials are also important in the field of infrared lens design. Optical instruments designed for the wavelength range where these two materials are transmissive achieve best performance when cooled to cryogenic temperatures to enhance signal from the scene over instrument background radiation. In order to enable high quality lens designs using silicon and germanium at cryogenic temperatures, we have measured the absolute refractive index of multiple prisms of these two materials using the Cryogenic, High-Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, as a function of both wavelength and temperature. For silicon, we report absolute refractive index and thermo-optic coefficient (dn/dT) at temperatures ranging from 20 to 300 K at wavelengths from 1.1 to 5.6 pin, while for germanium, we cover temperatures ranging from 20 to 300 K and wavelengths from 1.9 to 5.5 microns. We compare our measurements with others in the literature and provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures. Citing the wide variety of values for the refractive indices of these two materials found in the literature, we reiterate the importance of measuring the refractive index of a sample from the same batch of raw material from which final optical components are cut when absolute accuracy greater than k5 x 10" is desired.