scispace - formally typeset
Search or ask a question

Showing papers on "Silicon published in 2015"


Journal ArticleDOI
TL;DR: In this paper, a transparent silver nanowire electrode was used on perovskite solar cells to achieve a semi-transparent device, which was placed in a mechanically-stacked tandem configuration onto copper indium gallium diselenide (CIGS) and low-quality multicrystalline silicon (Si) to achieve solid-state polycrystalline tandem solar cells with a net improvement in efficiency over the bottom cell alone.
Abstract: A promising approach for upgrading the performance of an established low-bandgap solar technology without adding much cost is to deposit a high bandgap polycrystalline semiconductor on top to make a tandem solar cell. We use a transparent silver nanowire electrode on perovskite solar cells to achieve a semi-transparent device. We place the semi-transparent cell in a mechanically-stacked tandem configuration onto copper indium gallium diselenide (CIGS) and low-quality multicrystalline silicon (Si) to achieve solid-state polycrystalline tandem solar cells with a net improvement in efficiency over the bottom cell alone. This work paves the way for integrating perovskites into a low-cost and high-efficiency (>25%) tandem cell.

656 citations


Journal ArticleDOI
TL;DR: In this article, a review of dye-sensitized solar cells (DSSCs) and their key components, including the photoanode, sensitizer, electrolyte and counter electrode, is presented.

618 citations


Journal ArticleDOI
TL;DR: In this paper, a uniform array of silicon nanodisks can exhibit close-to-unity transmission at resonance in the visible spectrum, and a single-layer gradient metasurface utilizing this concept is shown to achieve around 45% transmission into the desired order.
Abstract: Recently, metasurfaces have received increasing attention due to their ability to locally manipulate the amplitude, phase and polarization of light with high spatial resolution. Transmissive metasurfaces based on high-index dielectric materials are particularly interesting due to the low intrinsic losses and compatibility with standard industrial processes. Here, it is demonstrated numerically and experimentally that a uniform array of silicon nanodisks can exhibit close-to-unity transmission at resonance in the visible spectrum. A single-layer gradient metasurface utilizing this concept is shown to achieve around 45% transmission into the desired order. These values represent an improvement over existing state-of-the-art, and are the result of simultaneous excitation and mutual interference of magnetic and electric-dipole resonances in the nanodisks, which enables directional forward scattering with a broad bandwidth. Due to CMOS compatibility and the relative ease of fabrication, this approach is promising for creation of novel flat optical devices.

599 citations


Journal ArticleDOI
TL;DR: This study reports the characterization of photoluminescence and optical spin polarization from single silicon vacancies in SiC, and demonstrates that single spins can be addressed at room temperature and shows coherent control of a single defect spin and finds long spin coherence times under ambient conditions.
Abstract: Defects in silicon carbide have recently been proposed as bright single-photon sources. It is now shown that they can be used as sources of single electron spins having long coherence times at room temperature. Spins in solids are cornerstone elements of quantum spintronics1. Leading contenders such as defects in diamond2,3,4,5 or individual phosphorus dopants in silicon6 have shown spectacular progress, but either lack established nanotechnology or an efficient spin/photon interface. Silicon carbide (SiC) combines the strength of both systems5: it has a large bandgap with deep defects7,8,9 and benefits from mature fabrication techniques10,11,12. Here, we report the characterization of photoluminescence and optical spin polarization from single silicon vacancies in SiC, and demonstrate that single spins can be addressed at room temperature. We show coherent control of a single defect spin and find long spin coherence times under ambient conditions. Our study provides evidence that SiC is a promising system for atomic-scale spintronics and quantum technology.

560 citations


Journal ArticleDOI
TL;DR: The complex refractive index of planar CH3NH3PbI3 thin films at room temperature is investigated by variable angle spectroscopic ellipsometry and spectrophotometry and results agree well with previously reported data of the absorption coefficient and are consistent with Kramers-Kronig transformations.
Abstract: The complex refractive index (dielectric function) of planar CH3NH3PbI3 thin films at room temperature is investigated by variable angle spectroscopic ellipsometry and spectrophotometry. Knowledge of the complex refractive index is essential for designing photonic devices based on CH3NH3PbI3 thin films such as solar cells, light-emitting diodes, or lasers. Because the directly measured quantities (reflectance, transmittance, and ellipsometric spectra) are inherently affected by multiple reflections, the complex refractive index has to be determined indirectly by fitting a model dielectric function to the experimental spectra. We model the dielectric function according to the Forouhi-Bloomer formulation with oscillators positioned at 1.597, 2.418, and 3.392 eV and achieve excellent agreement with the experimental spectra. Our results agree well with previously reported data of the absorption coefficient and are consistent with Kramers-Kronig transformations. The real part of the refractive index assumes a value of 2.611 at 633 nm, implying that CH3NH3PbI3-based solar cells are ideally suited for the top cell in monolithic silicon-based tandem solar cells.

502 citations


Journal ArticleDOI
TL;DR: In this article, a monolithic perovskite/silicon multi-junction solar cell with a VOC as high as 1.65 V was proposed. But the performance of this cell was not evaluated.
Abstract: With the advent of efficient high-bandgap metal-halide perovskite photovoltaics, an opportunity exists to make perovskite/silicon tandem solar cells. We fabricate a monolithic tandem by developing a silicon-based interband tunnel junction that facilitates majority-carrier charge recombination between the perovskite and silicon sub-cells. We demonstrate a 1 cm2 2-terminal monolithic perovskite/silicon multijunction solar cell with a VOC as high as 1.65 V. We achieve a stable 13.7% power conversion efficiency with the perovskite as the current-limiting sub-cell, and identify key challenges for this device architecture to reach efficiencies over 25%.

496 citations


Journal ArticleDOI
TL;DR: Direct graphene growth over silicon nanoparticles without silicon carbide formation is reported, suggesting that two-dimensional layered structure of graphene and its siliconcarbide-free integration with silicon can serve as a prototype in advancing silicon anodes to commercially viable technology.
Abstract: Silicon is receiving discernable attention as an active material for next generation lithium-ion battery anodes because of its unparalleled gravimetric capacity. However, the large volume change of silicon over charge–discharge cycles weakens its competitiveness in the volumetric energy density and cycle life. Here we report direct graphene growth over silicon nanoparticles without silicon carbide formation. The graphene layers anchored onto the silicon surface accommodate the volume expansion of silicon via a sliding process between adjacent graphene layers. When paired with a commercial lithium cobalt oxide cathode, the silicon carbide-free graphene coating allows the full cell to reach volumetric energy densities of 972 and 700 Wh l−1 at first and 200th cycle, respectively, 1.8 and 1.5 times higher than those of current commercial lithium-ion batteries. This observation suggests that two-dimensional layered structure of graphene and its silicon carbide-free integration with silicon can serve as a prototype in advancing silicon anodes to commercially viable technology. The volume expansion of silicon is a big problem in lithium-ion batteries with silicon anodes. Here, the authors report direct graphene growth on silicon nanoparticles, which effectively mitigates the problem, leading to excellent electrochemical performance.

476 citations


Journal ArticleDOI
TL;DR: It is shown that dimer-like silicon-based single nanoantennas produce both high surface enhanced fluorescence and surface enhanced Raman scattering, while at the same time generating a negligible temperature increase in their hot spots and surrounding environments.
Abstract: Nanoplasmonics has recently revolutionized our ability to control light on the nanoscale. Using metallic nanostructures with tailored shapes, it is possible to efficiently focus light into nanoscale field ‘hot spots'. High field enhancement factors have been achieved in such optical nanoantennas, enabling transformative science in the areas of single molecule interactions, highly enhanced nonlinearities and nanoscale waveguiding. Unfortunately, these large enhancements come at the price of high optical losses due to absorption in the metal, severely limiting real-world applications. Via the realization of a novel nanophotonic platform based on dielectric nanostructures to form efficient nanoantennas with ultra-low light-into-heat conversion, here we demonstrate an approach that overcomes these limitations. We show that dimer-like silicon-based single nanoantennas produce both high surface enhanced fluorescence and surface enhanced Raman scattering, while at the same time generating a negligible temperature increase in their hot spots and surrounding environments.

459 citations


Journal ArticleDOI
TL;DR: Zhou et al. as discussed by the authors assess the three main contenders for on-chip light sources: erbium-based light sources, germanium-on-silicon lasers and III-V-based silicon lasers.
Abstract: Hybrid silicon lasers based on bonded III–V layers on silicon are currently the best contenders for on-chip lasers for silicon photonics. On-chip silicon light sources are highly desired for use as electrical-to-optical converters in silicon-based photonics. Zhiping Zhou and Bing Yin of Peking University in China and Jurgen Michel of Massachusetts Institute of Technology assess the three main contenders for such light sources: erbium-based light sources, germanium-on-silicon lasers and III-V-based silicon lasers. They consider operating wavelength, pumping conditions, power consumption, thermal stability and fabrication process. The scientists regard the power efficiencies of electrically pumped erbium-based lasers as being too low and the threshold currents of germanium lasers as being too high. They conclude that III–V quantum dot lasers monolithically grown on silicon show the most promise for realizing on-chip lasers.

448 citations


Journal ArticleDOI
TL;DR: It is shown that, by using the prototypical photoanode material of haematite as a study tool, structural disorders on or near the surfaces are important causes of the low photovoltages.
Abstract: Photoelectrochemical (PEC) water splitting promises a solution to the problem of large-scale solar energy storage. However, its development has been impeded by the poor performance of photoanodes, particularly in their capability for photovoltage generation. Many examples employing photovoltaic modules to correct the deficiency for unassisted solar water splitting have been reported to-date. Here we show that, by using the prototypical photoanode material of haematite as a study tool, structural disorders on or near the surfaces are important causes of the low photovoltages. We develop a facile re-growth strategy to reduce surface disorders and as a consequence, a turn-on voltage of 0.45 V (versus reversible hydrogen electrode) is achieved. This result permits us to construct a photoelectrochemical device with a haematite photoanode and Si photocathode to split water at an overall efficiency of 0.91%, with NiFeOx and TiO2/Pt overlayers, respectively.

420 citations


Journal ArticleDOI
09 Mar 2015-ACS Nano
TL;DR: A nonfilling carbon-coated porous silicon microparticle (nC-pSiMP) that contains accurate void space to accommodate Si expansion while not losing packing density, which allows for a high volumetric capacity and simple and scalable production.
Abstract: Silicon is widely recognized as one of the most promising anode materials for lithium-ion batteries due to its 10 times higher specific capacity than graphite. Unfortunately, the large volume change of Si materials during their lithiation/delithiation process results in severe pulverization, loss of electrical contact, unstable solid–electrolyte interphase (SEI), and eventual capacity fading. Although there has been tremendous progress to overcome these issues through nanoscale materials design, improved volumetric capacity and reduced cost are still needed for practical application. To address these issues, we design a nonfilling carbon-coated porous silicon microparticle (nC-pSiMP). In this structure, porous silicon microparticles (pSiMPs) consist of many interconnected primary silicon nanoparticles; only the outer surface of the pSiMPs was coated with carbon, leaving the interior pore structures unfilled. Nonfilling carbon coating hinders electrolyte penetration into the nC-pSiMPs, minimizes the electr...

Journal ArticleDOI
TL;DR: It is shown that the native oxide on the silicon presents a transport barrier for photogenerated holes and causes recombination current, which is responsible for causing the kink, and a simple semiconductor physics model is proposed that qualitatively captures the effect.
Abstract: The advent of chemical vapor deposition (CVD) grown graphene has allowed researchers to investigate large area graphene/n-silicon Schottky barrier solar cells. Using chemically doped graphene, efficiencies of nearly 10% can be achieved for devices without antireflective coatings. However, many devices reported in past literature often exhibit a distinctive s-shaped kink in the measured I/V curves under illumination resulting in poor fill factor. This behavior is especially prevalent for devices with pristine (not chemically doped) graphene but can be seen in some cases for doped graphene as well. In this work, we show that the native oxide on the silicon presents a transport barrier for photogenerated holes and causes recombination current, which is responsible for causing the kink. We experimentally verify our hypothesis and propose a simple semiconductor physics model that qualitatively captures the effect. Furthermore, we offer an additional optimization to graphene/n-silicon devices: by choosing the o...

Journal ArticleDOI
TL;DR: Atomic layer etching (ALE) is a technique for removing thin layers of material using sequential reaction steps that are self-limiting as mentioned in this paper, which has been studied in the laboratory for more than 25 years.
Abstract: Atomic layer etching (ALE) is a technique for removing thin layers of material using sequential reaction steps that are self-limiting. ALE has been studied in the laboratory for more than 25 years. Today, it is being driven by the semiconductor industry as an alternative to continuous etching and is viewed as an essential counterpart to atomic layer deposition. As we enter the era of atomic-scale dimensions, there is need to unify the ALE field through increased effectiveness of collaboration between academia and industry, and to help enable the transition from lab to fab. With this in mind, this article provides defining criteria for ALE, along with clarification of some of the terminology and assumptions of this field. To increase understanding of the process, the mechanistic understanding is described for the silicon ALE case study, including the advantages of plasma-assisted processing. A historical overview spanning more than 25 years is provided for silicon, as well as ALE studies on oxides, III–V compounds, and other materials. Together, these processes encompass a variety of implementations, all following the same ALE principles. While the focus is on directional etching, isotropic ALE is also included. As part of this review, the authors also address the role of power pulsing as a predecessor to ALE and examine the outlook of ALE in the manufacturing of advanced semiconductor devices.

Journal ArticleDOI
TL;DR: It is reported that the first on-chip integrated mid-infrared frequency comb using a silicon optical parametric oscillator ring resonator is reported, and a 750-nm-wide comb centered at 2.6 um is demonstrated.
Abstract: Optical frequency combs in the mid-infrared are required for molecular gas detection applications but their realization in compact microresonator-based platforms is challenging. Here, Griffith et al. demonstrate on-chip broadband comb generation on a silicon microresonator spanning from 2.1 to 3.5 μm.

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate a silicon heterojunction solar cell with molybdenum oxide hole collector, featuring a fill factor value higher than 80% and certified energy conversion efficiency of 22.5%.
Abstract: Substituting the doped amorphous silicon films at the front of silicon heterojunction solar cells with wide-bandgap transition metal oxides can mitigate parasitic light absorption losses. This was recently proven by replacing p-type amorphous silicon with molybdenum oxide films. In this article, we evidence that annealing above 130 °C—often needed for the curing of printed metal contacts—detrimentally impacts hole collection of such devices. We circumvent this issue by using electrodeposited copper front metallization and demonstrate a silicon heterojunction solar cell with molybdenum oxide hole collector, featuring a fill factor value higher than 80% and certified energy conversion efficiency of 22.5%.

Journal ArticleDOI
TL;DR: In this article, solid electrolyte interphase (SEI) formation on the silicon anode's surface is investigated on 50 nm thick amorphous silicon thin film electrodes to understand the role of FEC on silicon electrode surface reactions.
Abstract: Fluoroethylene carbonate (FEC) has become a standard electrolyte additive for use with silicon negative electrodes, but how FEC affects solid electrolyte interphase (SEI) formation on the silicon anode’s surface is still not well understood. Herein, SEI formed from LiPF6-based carbonate electrolytes, with and without FEC, were investigated on 50 nm thick amorphous silicon thin film electrodes to understand the role of FEC on silicon electrode surface reactions. In contrast to previous work, anhydrous and anoxic techniques were used to prevent air and moisture contamination of prepared SEI films. This allowed for accurate characterization of the SEI structure and composition by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry depth profiling. These results show that FEC reduction leads to fluoride ion and LiF formation, consistent with previous computational and experimental results. Surprisingly, we also find that these species decrease lithium-ion solubility and increas...

Journal ArticleDOI
TL;DR: It is shown that a silicon-based photocathode with a capping epitaxial oxide layer can provide efficient and stable hydrogen production from water and be highly dependent on the size and spacing of the structured metal catalyst.
Abstract: The rapidly increasing global demand for energy combined with the environmental impact of fossil fuels has spurred the search for alternative sources of clean energy. One promising approach is to convert solar energy into hydrogen fuel using photoelectrochemical cells. However, the semiconducting photoelectrodes used in these cells typically have low efficiencies and/or stabilities. Here we show that a silicon-based photocathode with a capping epitaxial oxide layer can provide efficient and stable hydrogen production from water. In particular, a thin epitaxial layer of strontium titanate (SrTiO3) was grown directly on Si(001) by molecular beam epitaxy. Photogenerated electrons can be transported easily through this layer because of the conduction-band alignment and lattice match between single-crystalline SrTiO3 and silicon. The approach was used to create a metal–insulator–semiconductor photocathode that, under a broad-spectrum illumination at 100 mW cm−2, exhibits a maximum photocurrent density of 35 mA cm−2 and an open circuit potential of 450 mV; there was no observable decrease in performance after 35 hours of operation in 0.5 M H2SO4. The performance of the photocathode was also found to be highly dependent on the size and spacing of the structured metal catalyst. Therefore, mesh-like Ti/Pt nanostructured catalysts were created using a nanosphere lithography lift-off process and an applied-bias photon-to-current efficiency of 4.9% was achieved. A silicon-based photocathode with an epitaxial strontium titanate protection layer and a mesh-like nanostructured catalyst can provide an applied bias photon-to-current efficiency of 4.9% for water reduction.

29 Apr 2015
TL;DR: In this paper, an interpenetrated gel polymer binder for high-performance silicon anodes is created through in-situ crosslinking of water-soluble poly(acrylic acid) (PAA) and polyvinyl alcohol (PVA) precursors.
Abstract: Silicon has attracted ever-increasing attention as a high-capacity anode material in Li-ion batteries owing to its extremely high theoretical capacity. However, practical application of silicon anodes is seriously hindered by its fast capacity fading as a result of huge volume changes during the charge/discharge process. Here, an interpenetrated gel polymer binder for high-performance silicon anodes is created through in-situ crosslinking of water-soluble poly(acrylic acid) (PAA) and polyvinyl alcohol (PVA) precursors. This gel polymer binder with deformable polymer network and strong adhesion on silicon particles can effectively accommodate the large volume change of silicon anodes upon lithiation/delithiation, leading to an excellent cycling stability and high Coulombic efficiency even at high current densities. Moreover, high areal capacity of ∼4.3 mAh/cm2 is achieved based on the silicon anode using the gel PAA–PVA polymer binder with a high mass loading. In view of simplicity in using the water soluble gel polymer binder, it is believed that this novel binder has a great potential to be used for high capacity silicon anodes in next generation Li-ion batteries, as well as for other electrode materials with large volume change during cycling.

BookDOI
01 Jan 2015
TL;DR: The use of slag-based silicate fertilizers in agriculture can be traced back to the Middle Ages in Europe as discussed by the authors and has been well documented to play an important role in providing benefits on growth and yield, especially in plants under stressful environments.
Abstract: Although silicon (Si) is not yet listed among the essential elements for the growth of higher plants, it has been well documented to play an important role in providing benefi cial effects on growth and yield, especially in plants under stressful environments. From a practical perspective, the use of slag-based silicate fertilizers in agriculture can be dated back to the Middle Ages in Europe. Over the last decade, the discovery of specifi c Si transporters in rice roots has allowed great progress in the understanding of Si uptake by plants at the molecular level. In the same manner, important advancements have been made in dissecting the molecular mechanisms by which Si enhances plant resistance to fungal and bacterial diseases and insect pest damage. In contrast, more efforts are needed to explain at the molecular level the numerous reports showing Si benefi ts against abiotic stresses. In this chapter, a brief review is presented focusing on the most important historical points and general introduction of worldwide Si research.

Journal ArticleDOI
TL;DR: In this article, an optically pumped InP-based distributed feedback laser array was demonstrated for wavelength division multiplexing applications on (001)-silicon operating at room temperature.
Abstract: Scientists demonstrate an optically pumped InP-based distributed feedback laser array monolithically grown on (001)-silicon operating at room temperature that is suitable for wavelength-division multiplexing applications.

Journal ArticleDOI
TL;DR: Three-dimensional porous silicon-based anode materials fabricated from natural reed leaves by calcination and magnesiothermic reduction show a remarkable Li-ion storage performance: even after 4000 cycles and at a rate of 10 C, a specific capacity of 420 h g(-1) is achieved.
Abstract: Silicon is an attractive anode material in energy storage devices, as it has a ten times higher theoretical capacity than its state-of-art carbonaceous counterpart. However, the common process to synthesize silicon nanostructured electrodes is complex, costly, and energy-intensive. Three-dimensional (3D) porous silicon-based anode materials have been fabricated from natural reed leaves by calcination and magnesiothermic reduction. This sustainable and highly abundant silica source allows for facile production of 3D porous silicon with very good electrochemical performance. The obtained silicon anode retains the 3D hierarchical architecture of the reed leaf. Impurity leaching and gas release during the fabrication process leads to an interconnected porosity and the reductive treatment to an inside carbon coating. Such anodes show a remarkable Li-ion storage performance: even after 4000 cycles and at a rate of 10 C, a specific capacity of 420 mA h g−1 is achieved.

Journal ArticleDOI
TL;DR: In this paper, the high work function metal oxides, tungsten oxide (WOx) and molybdenum oxide (MoOx), were investigated regarding their ability to form a hole-selective contact for a crystalline silicon absorber.

Journal ArticleDOI
TL;DR: Materials, mechanics, and design layouts to achieve transient electronics in stretchable configurations with biodegradable elastomers for substrate/encapsulation layers are described and experimental and theoretical results illuminate the mechanical properties under large strain deformation.
Abstract: Transient electronics represents an emerging class of technology that exploits materials and/or device constructs that are capable of physically disappearing or disintegrating in a controlled manner at programmed rates or times. Inorganic semiconductor nanomaterials such as silicon nanomembranes/nanoribbons provide attractive choices for active elements in transistors, diodes and other essential components of overall systems that dissolve completely by hydrolysis in biofluids or groundwater. We describe here materials, mechanics, and design layouts to achieve this type of technology in stretchable configurations with biodegradable elastomers for substrate/encapsulation layers. Experimental and theoretical results illuminate the mechanical properties under large strain deformation. Circuit characterization of complementary metal-oxide-semiconductor inverters and individual transistors under various levels of applied loads validates the design strategies. Examples of biosensors demonstrate possibilities for stretchable, transient devices in biomedical applications.

Journal ArticleDOI
TL;DR: The authors' characterization based simulations forecast that with optimized layer thicknesses the four-terminal configuration enables efficiencies over 30%, well above the current single-junction crystalline silicon cell record of 25.6%.
Abstract: In this study we analyze and discuss the optical properties of various tandem architectures: mechanically stacked (four-terminal) and monolithically integrated (two-terminal) tandem devices, consisting of a methyl ammonium lead triiodide (CH3NH3PbI3) perovskite top solar cell and a crystalline silicon bottom solar cell. We provide layer thickness optimization guidelines and give estimates of the maximum tandem efficiencies based on state-of-the-art sub cells. We use experimental complex refractive index spectra for all involved materials as input data for an in-house developed optical simulator CROWM. Our characterization based simulations forecast that with optimized layer thicknesses the four-terminal configuration enables efficiencies over 30%, well above the current single-junction crystalline silicon cell record of 25.6%. Efficiencies over 30% can also be achieved with a two-terminal monolithic integration of the sub-cells, combined with proper selection of layer thicknesses.

Journal ArticleDOI
28 Apr 2015-ACS Nano
TL;DR: Graphene layers grown on copper foils by chemical vapor deposition and transferred to silicon wafers by wet etching and electrochemical delamination methods with respect to residual submonolayer metallic contaminations are investigated.
Abstract: Integration of graphene with Si microelectronics is very appealing by offering a potentially broad range of new functionalities. New materials to be integrated with the Si platform must conform to stringent purity standards. Here, we investigate graphene layers grown on copper foils by chemical vapor deposition and transferred to silicon wafers by wet etching and electrochemical delamination methods with respect to residual submonolayer metallic contaminations. Regardless of the transfer method and associated cleaning scheme, time-of-flight secondary ion mass spectrometry and total reflection X-ray fluorescence measurements indicate that the graphene sheets are contaminated with residual metals (copper, iron) with a concentration exceeding 1013 atoms/cm2. These metal impurities appear to be partially mobile upon thermal treatment, as shown by depth profiling and reduction of the minority charge carrier diffusion length in the silicon substrate. As residual metallic impurities can significantly alter elect...

Journal ArticleDOI
TL;DR: In this paper, a flexible 3D Si/C fiber paper electrode was synthesized by simultaneously electrospraying nano-Si-PAN (polyacrylonitrile) clusters and electrospinning PAN fibers followed by carbonization.
Abstract: Although the theoretical capacity of silicon is ten times higher than that of graphite, the overall electrode capacity of Si anodes is still low due to the low Si loading and heavy metal current collector. Here, a novel flexible 3D Si/C fiber paper electrode synthesized by simultaneously electrospraying nano-Si-PAN (polyacrylonitrile) clusters and electrospinning PAN fibers followed by carbonization is reported. The combined technology allows uniform incorporation of Si nanoparticles into a carbon textile matrix to form a nano-Si/carbon composite fiber paper. The flexible 3D Si/C fiber paper electrode demonstrate a very high overall capacity of ≈1600 mAh g-1 with capacity loss less than 0.079% per cycle for 600 cycles and excellent rate capability. The exceptional performance is attributed to the unique architecture of the flexible 3D Si/C fiber paper, i.e., the resilient and conductive carbon fiber network matrix, carbon-coated Si nanoparticle clusters, strong adhesion between carbon fibers and Si nanoparticle clusters, and uniform distribution of Si/C clusters in the carbon fiber frame. The scalable and facile synthesis method, good mechanical properties, and excellent electrochemical performance at a high Si loading make the flexible 3D Si/C fiber paper batteries extremely attractive for plug-in electric vehicles, flexible electronics, space exploration, and military applications.

Journal ArticleDOI
TL;DR: In this paper, the behavior of amino group-functionalized porous silicon (PS) intended to be used in bio-sensing and/or in medical applications was reported, where Amino-terminated organic layers were deposited onto silicon wafers and PS layers via 3-aminopropyltriethoxysilane (APTES) prepared in freshly hydrolysis solution.

Journal ArticleDOI
TL;DR: In this article, a void-containing mesoporous carbon-encapsulated commercial silicon nanoparticles (NPs) in yolk-shell structures were used to solve the problem of short cycling life and unsatisfactory rate-capability caused by the large volume expansion and the consequent structural degradation during lithiation/delithiation processes.

Journal ArticleDOI
TL;DR: The formation of a new orthorhombic allotrope of silicon, Si24, is reported using a novel two-step synthesis methodology, which expands the known allotropy for element fourteen and demonstrates the potential for new materials with desirable properties.
Abstract: Silicon is ubiquitous in contemporary technology. The most stable form of silicon at ambient conditions takes on the structure of diamond (cF8, d-Si) and is an indirect bandgap semiconductor, which prevents it from being considered as a next-generation platform for semiconductor technologies. Here, we report the formation of a new orthorhombic allotrope of silicon, Si24, using a novel two-step synthesis methodology. First, a Na4Si24 precursor was synthesized at high pressure; second, sodium was removed from the precursor by a thermal 'degassing' process. The Cmcm structure of Si24, which has 24 Si atoms per unit cell (oC24), contains open channels along the crystallographic a-axis that are formed from six- and eight-membered sp(3) silicon rings. This new allotrope possesses a quasidirect bandgap near 1.3 eV. Our combined experimental/theoretical study expands the known allotropy for element fourteen and the unique high-pressure precursor synthesis methodology demonstrates the potential for new materials with desirable properties.

Journal ArticleDOI
TL;DR: P densely packed silicon nanotextures with feature sizes smaller than 50 nm enhance the broadband antireflection compared with that predicted by their geometry alone, providing the key to improved performance.
Abstract: Broadband light antireflection materials have numerous applications as highly transparent window, for broadband applications thin-film multilayers have been considered. Here, Rahman et al. demonstrate broadband antireflection enhancement in silicon solar cells using a self-assembled, nanostructured copolymer.