scispace - formally typeset
Search or ask a question

Showing papers on "Silicon published in 2017"


Journal ArticleDOI
TL;DR: In this paper, a silicon heterojunction with interdigitated back contacts was presented, achieving an efficiency of 26.3% and a detailed loss analysis to guide further developments.
Abstract: The efficiency of silicon solar cells has a large influence on the cost of most photovoltaics panels. Here, researchers from Kaneka present a silicon heterojunction with interdigitated back contacts reaching an efficiency of 26.3% and provide a detailed loss analysis to guide further developments.

2,052 citations


Journal ArticleDOI
TL;DR: In this paper, the authors improved the efficiency of monolithic, two-terminal, 1-cm2 perovskite/silicon tandems to 23.6% by combining an infrared-tuned silicon heterojunction bottom cell with the recently developed caesium formamidinium lead halide pervskite.
Abstract: As the record single-junction efficiencies of perovskite solar cells now rival those of copper indium gallium selenide, cadmium telluride and multicrystalline silicon, they are becoming increasingly attractive for use in tandem solar cells due to their wide, tunable bandgap and solution processability. Previously, perovskite/silicon tandems were limited by significant parasitic absorption and poor environmental stability. Here, we improve the efficiency of monolithic, two-terminal, 1-cm2 perovskite/silicon tandems to 23.6% by combining an infrared-tuned silicon heterojunction bottom cell with the recently developed caesium formamidinium lead halide perovskite. This more-stable perovskite tolerates deposition of a tin oxide buffer layer via atomic layer deposition that prevents shunts, has negligible parasitic absorption, and allows for the sputter deposition of a transparent top electrode. Furthermore, the window layer doubles as a diffusion barrier, increasing the thermal and environmental stability to enable perovskite devices that withstand a 1,000-hour damp heat test at 85 ∘C and 85% relative humidity. Perovskite solar cells can complement silicon photovoltaics in multijunction devices. Here, the authors optimize light harvesting in monolithic perovskite-on-silicon devices and fabricate a certified 23.6% efficient, 1 cm2 tandem solar cell with a perovskite device that withstands damp heat tests.

1,163 citations


Journal ArticleDOI
21 Jul 2017-Science
TL;DR: It is shown that the incorporation of 5 weight % polyrotaxane to conventional polyacrylic acid binder imparts extraordinary elasticity to the polymer network originating from the ring sliding motion of polyrotAXane, enabling stable cycle life for silicon microparticle anodes at commercial-level areal capacities.
Abstract: Lithium-ion batteries with ever-increasing energy densities are needed for batteries for advanced devices and all-electric vehicles. Silicon has been highlighted as a promising anode material because of its superior specific capacity. During repeated charge-discharge cycles, silicon undergoes huge volume changes. This limits cycle life via particle pulverization and an unstable electrode-electrolyte interface, especially when the particle sizes are in the micrometer range. We show that the incorporation of 5 weight % polyrotaxane to conventional polyacrylic acid binder imparts extraordinary elasticity to the polymer network originating from the ring sliding motion of polyrotaxane. This binder combination keeps even pulverized silicon particles coalesced without disintegration, enabling stable cycle life for silicon microparticle anodes at commercial-level areal capacities.

882 citations


Journal ArticleDOI
TL;DR: The technology progress of SiC power devices and their emerging applications are reviewed and the design challenges and future trends are summarized.
Abstract: Silicon carbide (SiC) power devices have been investigated extensively in the past two decades, and there are many devices commercially available now. Owing to the intrinsic material advantages of SiC over silicon (Si), SiC power devices can operate at higher voltage, higher switching frequency, and higher temperature. This paper reviews the technology progress of SiC power devices and their emerging applications. The design challenges and future trends are summarized at the end of the paper.

806 citations


Journal ArticleDOI
TL;DR: In this article, the efficiency of n-type silicon solar cells with a front side boron-doped emitter and a full-area tunnel oxide passivating electron contact was studied experimentally as a function of wafer thickness W and resistivity ρ b.

470 citations


Journal ArticleDOI
TL;DR: Rubidium (Rb) is explored as an alternative cation to use in a novel multication method with the formamidinium/methylammonium/cesium (Cs) system to obtain 1.73 eV bangap perovskite cells with negligible hysteresis and steady state efficiency as high as 17.4 as discussed by the authors.
Abstract: Rubidium (Rb) is explored as an alternative cation to use in a novel multication method with the formamidinium/methylammonium/cesium (Cs) system to obtain 1.73 eV bangap perovskite cells with negligible hysteresis and steady state efficiency as high as 17.4%. The study shows the beneficial effect of Rb in improving the crystallinity and suppressing defect migration in the perovskite material. The light stability of the cells examined under continuous illumination of 12 h is improved upon the addition of Cs and Rb. After several cycles of 12 h light–dark, the cell retains 90% of its initial efficiency. In parallel, sputtered transparent conducting oxide thin films are developed to be used as both rear and front transparent contacts on quartz substrate with less than 5% parasitic absorption of near infrared wavelengths. Using these developments, semi-transparent perovskite cells are fabricated with steady state efficiency of up to 16.0% and excellent average transparency of ≈84% between 720 and 1100 nm. In a tandem configuration using a 23.9% silicon cell, 26.4% efficiency (10.4% from the silicon cell) in a mechanically stacked tandem configuration is demonstrated which is very close to the current record for a single junction silicon cell of 26.6%.

446 citations


Journal ArticleDOI
TL;DR: Interestingly, it is found that the amorphousTiO2 shells offer superior buffering properties compared to crystalline TiO2 layers for unprecedented cycling stability, and accelerating rate calorimetry testing reveals that the TiO1 -encapsulated Si nanoparticles are safer than conventional carbon-coated Si-based anodes.
Abstract: Smart surface coatings of silicon (Si) nanoparticles are shown to be good examples for dramatically improving the cyclability of lithium-ion batteries. Most coating materials, however, face significant challenges, including a low initial Coulombic efficiency, tedious processing, and safety assessment. In this study, a facile sol–gel strategy is demonstrated to synthesize commercial Si nanoparticles encapsulated by amorphous titanium oxide (TiO2), with core–shell structures, which show greatly superior electrochemical performance and high-safety lithium storage. The amorphous TiO2 shell (≈3 nm) shows elastic behavior during lithium discharging and charging processes, maintaining high structural integrity. Interestingly, it is found that the amorphous TiO2 shells offer superior buffering properties compared to crystalline TiO2 layers for unprecedented cycling stability. Moreover, accelerating rate calorimetry testing reveals that the TiO2-encapsulated Si nanoparticles are safer than conventional carbon-coated Si-based anodes.

369 citations


Journal ArticleDOI
TL;DR: Double carbon shells coated Si nanoparticles (DCS-Si) are prepared to perform dual functions on encapsulating volume change of silicon and stabilizing SEI layer in cycles using double carbon shells, simultaneously enhancing electronic conductivity and controlling SEI growth.
Abstract: To address the challenge of huge volume change and unstable solid electrolyte interface (SEI) of silicon in cycles, causing severe pulverization, this paper proposes a "double-shell" concept. This concept is designed to perform dual functions on encapsulating volume change of silicon and stabilizing SEI layer in cycles using double carbon shells. Double carbon shells coated Si nanoparticles (DCS-Si) are prepared. Inner carbon shell provides finite inner voids to allow large volume changes of Si nanoparticles inside of inner carbon shell, while static outer shell facilitates the formation of stable SEI. Most importantly, intershell spaces are preserved to buffer volume changes and alleviate mechanical stress from inner carbon shell. DCS-Si electrodes display a high rechargeable specific capacity of 1802 mAh g-1 at a current rate of 0.2 C, superior rate capability and good cycling performance up to 1000 cycles. A full cell of DCS-Si//LiNi0.45 Co0.1 Mn1.45 O4 exhibits an average discharge voltage of 4.2 V, a high energy density of 473.6 Wh kg-1 , and good cycling performance. Such double-shell concept can be applied to synthesize other electrode materials with large volume changes in cycles by simultaneously enhancing electronic conductivity and controlling SEI growth.

360 citations


Journal ArticleDOI
TL;DR: In this paper, the recent progress in surface and interface engineering of silicon-based anode materials such as coreshell, yolk-shell, sandwiched structures and their applications in lithium-ion batteries are reviewed.
Abstract: Silicon is one of the most promising anode materials for lithium-ion batteries because of the highest known theoretical capacity and abundance in the earth' crust. Unfortunately, significant “breathing effect” during insertion/deinsertion of lithium in the continuous charge-discharge processes causes the seriously structural degradation, thus losing specific capacity and increasing battery impedance. To overcome the resultant rapid capacity decay, significant achievements has been made in developing various nanostructures and surface coating approaches in terms of the improvement of structural stability and realizing the long cycle times. Here, the recent progress in surface and interface engineering of silicon-based anode materials such as core-shell, yolk-shell, sandwiched structures and their applications in lithium-ion batteries are reviewed. Some feasible strategies for the structural design and boosting the electrochemical performance are highlighted. Future research directions in the field of silicon-based anode materials for next-generation lithium-ion batteries are summarized.

333 citations


Journal ArticleDOI
TL;DR: In this paper, a waveguide-integrated light source and photodetector based on a p-n junction of bilayer MoTe2, a two-dimensional transition-metal dichalcogenides (TMD) with an infrared bandgap is presented.
Abstract: One of the current challenges in photonics is developing high-speed, power-efficient, chip-integrated optical communications devices to address the interconnects bottleneck in high-speed computing systems. Silicon photonics has emerged as a leading architecture, in part because of the promise that many components, such as waveguides, couplers, interferometers and modulators, could be directly integrated on silicon-based processors. However, light sources and photodetectors present ongoing challenges. Common approaches for light sources include one or few off-chip or wafer-bonded lasers based on III-V materials, but recent system architecture studies show advantages for the use of many directly modulated light sources positioned at the transmitter location. The most advanced photodetectors in the silicon photonic process are based on germanium, but this requires additional germanium growth, which increases the system cost. The emerging two-dimensional transition-metal dichalcogenides (TMDs) offer a path for optical interconnect components that can be integrated with silicon photonics and complementary metal-oxide-semiconductors (CMOS) processing by back-end-of-the-line steps. Here, we demonstrate a silicon waveguide-integrated light source and photodetector based on a p-n junction of bilayer MoTe2, a TMD semiconductor with an infrared bandgap. This state-of-the-art fabrication technology provides new opportunities for integrated optoelectronic systems.

308 citations


Journal ArticleDOI
TL;DR: In this paper, the authors summarized the Si/C materials utilized in lithium-ion battery anodes in terms of structural design principles, material synthesis methods, morphological characteristics and electrochemical performances by highlighting the material structures.

Journal ArticleDOI
TL;DR: TMDs are established as practical materials for integrated TMD-silicon nanolasers suitable for silicon-based nanophotonic applications in silicon-transparent wavelengths with the largest value reported for a TMD laser.
Abstract: Monolayer transition-metal dichalcogenides (TMDs) have the potential to become efficient optical-gain materials for low-energy-consumption nanolasers with the smallest gain media because of strong excitonic emission. However, until now TMD-based lasing has been realized only at low temperatures. Here we demonstrate for the first time a room-temperature laser operation in the infrared region from a monolayer of molybdenum ditelluride on a silicon photonic-crystal cavity. The observation is enabled by the unique combination of a TMD monolayer with an emission wavelength transparent to silicon, and a high-Q cavity of the silicon nanobeam. The laser is pumped by a continuous-wave excitation, with a threshold density of 6.6 W cm-2. Its linewidth is as narrow as 0.202 nm with a corresponding Q of 5,603, the largest value reported for a TMD laser. This demonstration establishes TMDs as practical materials for integrated TMD-silicon nanolasers suitable for silicon-based nanophotonic applications in silicon-transparent wavelengths.

Journal ArticleDOI
TL;DR: Using the same silicon nitride platform and phased array architecture, it is demonstrated that the first large-aperture visible nanophotonic phased array at 635 nm with an aperture size of 0.064°×0.074° is demonstrated, to the best of the authors' knowledge.
Abstract: We demonstrate passive large-scale nanophotonic phased arrays in a CMOS-compatible silicon photonic platform. Silicon nitride waveguides are used to allow for higher input power and lower phase variation compared to a silicon-based distribution network. A phased array at an infrared wavelength of 1550 nm is demonstrated with an ultra-large aperture size of 4 mm×4 mm, achieving a record small and near diffraction-limited spot size of 0.021°×0.021° with a side lobe suppression of 10 dB. A main beam power of 400 mW is observed. Using the same silicon nitride platform and phased array architecture, we also demonstrate, to the best of our knowledge, the first large-aperture visible nanophotonic phased array at 635 nm with an aperture size of 0.5 mm×0.5 mm and a spot size of 0.064°×0.074°.

Journal ArticleDOI
TL;DR: In this paper, the advantages and challenges associated with these two material platforms are discussed, and the case of dispersive spectrometers, which are widely used in various silicon photonic applications, is presented.
Abstract: The high index contrast silicon-on-insulator platform is the dominant CMOS compatible platform for photonic integration. The successful use of silicon photonic chips in optical communication applications has now paved the way for new areas where photonic chips can be applied. It is already emerging as a competing technology for sensing and spectroscopic applications. This increasing range of applications for silicon photonics instigates an interest in exploring new materials, as silicon-on-insulator has some drawbacks for these emerging applications, e.g., silicon is not transparent in the visible wavelength range. Silicon nitride is an alternate material platform. It has moderately high index contrast, and like silicon-on-insulator, it uses CMOS processes to manufacture photonic integrated circuits. In this paper, the advantages and challenges associated with these two material platforms are discussed. The case of dispersive spectrometers, which are widely used in various silicon photonic applications, is presented for these two material platforms.

Journal ArticleDOI
TL;DR: Keeping structural/electrode stability against large volume change by means of an all-integrated design is realized for silicon anodes through multicomponent interlinking among carbon@void@silica@silicon (CVSS) nanospheres and cross-linked carboxymethyl cellulose and citric acid polymer binder (c-CMC-CA).
Abstract: The concept of an all-integrated design with multifunctionalization is widely employed in optoelectronic devices, sensors, resonator systems, and microfluidic devices, resulting in benefits for many ongoing research projects. Here, maintaining structural/electrode stability against large volume change by means of an all-integrated design is realized for silicon anodes. An all-integrated silicon anode is achieved via multicomponent interlinking among carbon@void@silica@silicon (CVSS) nanospheres and cross-linked carboxymethyl cellulose and citric acid polymer binder (c-CMC-CA). Due to the additional protection from the silica layer, CVSS is superior to the carbon@void@silicon (CVS) electrode in terms of long-term cyclability. The as-prepared all-integrated CVSS electrode exhibits high mechanical strength, which can be ascribed to the high adhesivity and ductility of c-CMC-CA binder and the strong binding energy between CVSS and c-CMC-CA, as calculated based on density functional theory (DFT). This electrode exhibits a high reversible capacity of 1640 mA h g-1 after 100 cycles at a current density of 1 A g-1 , high rate performance, and long-term cycling stability with 84.6% capacity retention after 1000 cycles at 5 A g-1 .

Journal ArticleDOI
TL;DR: In this paper, direct-current fields across p-i-n junctions in silicon ridge waveguides were applied to perturb the permittivity of the direct-c. Kerr effect and achieve phase-only modulation and second-harmonic generation.
Abstract: The symmetry of crystalline silicon inhibits a second-order optical nonlinear susceptibility, χ(2), in complementary metal–oxide–semiconductor-compatible silicon photonic platforms. However, χ(2) is required for important processes such as phase-only modulation, second-harmonic generation (SHG) and sum/difference frequency generation. Here, we break the crystalline symmetry by applying direct-current fields across p–i–n junctions in silicon ridge waveguides and induce a χ(2) proportional to the large χ(3) of silicon. The obtained χ(2) is first used to perturb the permittivity (the direct-current Kerr effect) and achieve phase-only modulation. Second, the spatial distribution of χ(2) is altered by periodically patterning p–i–n junctions to quasi-phase-match pump and second-harmonic modes and realize SHG. We measure a maximum SHG efficiency of P2ω/Pω2 = 13 ± 0.5% W−1 at λω = 2.29 µm and with field-induced χ(2) = 41 ± 1.5 pm V–1. We expect such field-induced χ(2) in silicon to lead to a new class of complex integrated devices such as carrier-envelope offset frequency stabilizers, terahertz generators, optical parametric oscillators and chirp-free modulators. The application of d.c. fields across p–i–n junctions in silicon ridge waveguides leads to crystal symmetry breaking. This induces a second-order optical nonlinear susceptibility that enables phase-only modulation and second-harmonic generation with an efficiency of ∼13% W–1 at 2.29 µm.

Journal ArticleDOI
TL;DR: It is demonstrated that direct chemical vapor deposition (CVD) growth of vertical graphene nanosheets on commercial SiO microparticles can provide a stable conducting network via interconnected vertical graphene encapsulation during lithiation, thus remarkably improving the cycling stability in high mass loading SiO anodes.
Abstract: Silicon-based materials are considered as strong candidates to next-generation lithium ion battery anodes because of their ultrahigh specific capacities. However, the pulverization and delamination of electrochemical active materials originated from the huge volume expansion (>300%) of silicon during the lithiation process results in rapid capacity fade, especially in high mass loading electrodes. Here we demonstrate that direct chemical vapor deposition (CVD) growth of vertical graphene nanosheets on commercial SiO microparticles can provide a stable conducting network via interconnected vertical graphene encapsulation during lithiation, thus remarkably improving the cycling stability in high mass loading SiO anodes. The vertical graphene encapsulated SiO (d-SiO@vG) anode exhibits a high capacity of 1600 mA h/g and a retention up to 93% after 100 cycles at a high areal mass loading of 1.5 mg/cm2. Furthermore, 5 wt % d-SiO@vG as additives increased the energy density of traditional graphite/NCA 18650 cell...

Journal ArticleDOI
16 Feb 2017-Nature
TL;DR: A photovoltage field-effect transistor that uses silicon for charge transport, but is also sensitive to infrared light owing to the use of a quantum dot light absorber, and shows that colloidal quantum dots can be used as an efficient platform for silicon-based infrared detection, competitive with state-of-the-art epitaxial semiconductors.
Abstract: The detection of infrared radiation enables night vision, health monitoring, optical communications and three-dimensional object recognition. Silicon is widely used in modern electronics, but its electronic bandgap prevents the detection of light at wavelengths longer than about 1,100 nanometres. It is therefore of interest to extend the performance of silicon photodetectors into the infrared spectrum, beyond the bandgap of silicon. Here we demonstrate a photovoltage field-effect transistor that uses silicon for charge transport, but is also sensitive to infrared light owing to the use of a quantum dot light absorber. The photovoltage generated at the interface between the silicon and the quantum dot, combined with the high transconductance provided by the silicon device, leads to high gain (more than 104 electrons per photon at 1,500 nanometres), fast time response (less than 10 microseconds) and a widely tunable spectral response. Our photovoltage field-effect transistor has a responsivity that is five orders of magnitude higher at a wavelength of 1,500 nanometres than that of previous infrared-sensitized silicon detectors. The sensitization is achieved using a room-temperature solution process and does not rely on traditional high-temperature epitaxial growth of semiconductors (such as is used for germanium and III-V semiconductors). Our results show that colloidal quantum dots can be used as an efficient platform for silicon-based infrared detection, competitive with state-of-the-art epitaxial semiconductors.

Journal ArticleDOI
TL;DR: In this paper, the authors show that the high refractive index of silicon can be exploited at wavelengths as short as 532 nm by demonstrating a crystalline silicon metasurface with a transmission efficiency of 71% at this wavelength and a diffraction efficiency of 95% into the desired diffraction order.
Abstract: Dielectric metasurfaces require high refractive index contrast materials for optimum performance. This requirement imposes a severe restraint; either devices have been demonstrated at wavelengths of 700 nm and above using high-index semiconductors such as silicon, or they use lower index dielectric materials such as TiO2 or Si3N4 and operate in the visible wavelength regime. Here, we show that the high refractive index of silicon can be exploited at wavelengths as short as 532 nm by demonstrating a crystalline silicon metasurface with a transmission efficiency of 71% at this wavelength and a diffraction efficiency of 95% into the desired diffraction order. The metasurfaces consist of a graded array of silicon posts arranged in a square lattice on a quartz substrate. We show full 2π phase control, and we experimentally demonstrate polarization-independent beam deflection at 532 nm wavelength. Our results open a new way for realizing efficient metasurfaces based on silicon for the technologically all-import...

Journal ArticleDOI
02 Mar 2017-Nature
TL;DR: The results demonstrate that the liquidus field of silicon dioxide (SiO2) is unexpectedly wide at the iron-rich portion of the Fe–Si–O ternary, such that an initial Fe-Si-O core crystallizes SiO2 as it cools, setting limits on silicon and oxygen concentrations in the present-day outer core.
Abstract: Melting experiments with liquid Fe–Si–O alloy at the pressure of the Earth’s core reveal that the crystallization of silicon dioxide leads to core convection and a dynamo. The Earth's core contains large amounts of iron (Fe), but its density, about ten per cent less than that of pure iron, indicates the presence of lighter elements in the outer core, potentially including silicon (Si) and oxygen (O). To simulate the early Earth, Kei Hirose and co-authors present melting experiments on liquid Fe–Si–O alloy at the pressures of the Earth's core in a laser-heated diamond-anvil cell. They find that an initial Fe–Si–O core would be able to crystallize silicon dioxide (SiO2) as it cools. The authors conclude that if crystallization proceeds from the top of the core, the sinking of SiO2-depleted Fe–Si–O liquid would have been more than enough to power core convection and a dynamo in the early Earth. The Earth’s core is about ten per cent less dense than pure iron (Fe), suggesting that it contains light elements as well as iron. Modelling of core formation at high pressure (around 40–60 gigapascals) and high temperature (about 3,500 kelvin) in a deep magma ocean1,2,3,4,5 predicts that both silicon (Si) and oxygen (O) are among the impurities in the liquid outer core6,7,8,9. However, only the binary systems Fe–Si and Fe–O have been studied in detail at high pressures, and little is known about the compositional evolution of the Fe–Si–O ternary alloy under core conditions. Here we performed melting experiments on liquid Fe–Si–O alloy at core pressures in a laser-heated diamond-anvil cell. Our results demonstrate that the liquidus field of silicon dioxide (SiO2) is unexpectedly wide at the iron-rich portion of the Fe–Si–O ternary, such that an initial Fe–Si–O core crystallizes SiO2 as it cools. If crystallization proceeds on top of the core, the buoyancy released should have been more than sufficient to power core convection and a dynamo, in spite of high thermal conductivity10,11, from as early on as the Hadean eon12. SiO2 saturation also sets limits on silicon and oxygen concentrations in the present-day outer core.

01 Feb 2017
Abstract: Perovskite solar cells can complement silicon photovoltaics in multijunction devices. Here, the authors optimize light harvesting in monolithic perovskite-on-silicon devices and fabricate a certified 23.6% efficient, 1 cm2 tandem solar cell with a perovskite device that withstands damp heat tests.

Journal ArticleDOI
TL;DR: In this paper, the thermal-photostability of mixed halide perovskites was investigated under various application conditions, and in particular combined light and heat stress, and it was found that the concerted effect of heat and light can induce both phase segregation and decomposition.
Abstract: Mixed iodide-bromide organolead perovskites with a bandgap of 1.70–1.80 eV have great potential to boost the efficiency of current silicon solar cells by forming a perovskite-silicon tandem structure. Yet, the stability of the perovskites under various application conditions, and in particular combined light and heat stress, is not well studied. Here, FA0.15Cs0.85Pb(I0.73Br0.27)3, with an optical bandgap of ≈1.72 eV, is used as a model system to investigate the thermal-photostability of wide-bandgap mixed halide perovskites. It is found that the concerted effect of heat and light can induce both phase segregation and decomposition in a pristine perovskite film. On the other hand, through a postdeposition film treatment with benzylamine (BA) molecules, the highly defective regions (e.g., film surface and grain boundaries) of the film can be well passivated, thus preventing the progression of decomposition or phase segregation in the film. Besides the stability improvement, the BA-modified perovskite solar cells also exhibit excellent photovoltaic performance, with the champion device reaching a power conversion efficiency of 18.1%, a stabilized power output efficiency of 17.1% and an open-circuit voltage (V oc) of 1.24 V.

Journal ArticleDOI
TL;DR: In this paper, a silicon-based Brillouin laser oscillator was demonstrated to produce phonon linewidth narrowing in the presence of optical self-oscillation, and the results provided a platform to develop a range of applications for monolithic integration within silicon photonic circuits.
Abstract: Brillouin laser oscillators offer powerful and flexible dynamics as the basis for mode-locked lasers, microwave oscillators, and optical gyroscopes in a variety of optical systems. However, Brillouin interactions are exceedingly weak in conventional silicon photonic waveguides, stifling progress towards silicon-based Brillouin lasers. The recent advent of hybrid photonic-phononic waveguides has revealed Brillouin interactions to be one of the strongest and most tailorable nonlinearities in silicon. Here, we harness these engineered nonlinearities to demonstrate Brillouin lasing in silicon. Moreover, we show that this silicon-based Brillouin laser enters an intriguing regime of dynamics, in which optical self-oscillation produces phonon linewidth narrowing. Our results provide a platform to develop a range of applications for monolithic integration within silicon photonic circuits.

Journal ArticleDOI
08 May 2017-ACS Nano
TL;DR: This work demonstrates the synthesis of mesoporous silicon hollow nanocubes (m-Si HCs) derived from a metal-organic framework (MOF) as an anode material with outstanding electrochemical properties and exhibits outstanding cycle stability.
Abstract: Controlling the morphology of nanostructured silicon is critical to improving the structural stability and electrochemical performance in lithium-ion batteries. The use of removable or sacrificial templates is an effective and easy route to synthesize hollow materials. Herein, we demonstrate the synthesis of mesoporous silicon hollow nanocubes (m-Si HCs) derived from a metal–organic framework (MOF) as an anode material with outstanding electrochemical properties. The m-Si HC architecture with the mesoporous external shell (∼15 nm) and internal void (∼60 nm) can effectively accommodate volume variations and relieve diffusion-induced stress/strain during repeated cycling. In addition, this cube architecture provides a high electrolyte contact area because of the exposed active site, which can promote the transportation of Li ions. The well-designed m-Si HC with carbon coating delivers a high reversible capacity of 1728 mAhg–1 with an initial Coulombic efficiency of 80.1% after the first cycle and an excelle...

Journal ArticleDOI
01 May 2017-ACS Nano
TL;DR: It is shown that the silicon thin film electrodes with an amorphous C layer showed a remarkably improved electrochemical performance in terms of capacity retention and Coulombic efficiency.
Abstract: The next generation of lithium ion batteries (LIBs) with increased energy density for large-scale applications, such as electric mobility, and also for small electronic devices, such as microbatteries and on-chip batteries, requires advanced electrode active materials with enhanced specific and volumetric capacities. In this regard, silicon as anode material has attracted much attention due to its high specific capacity. However, the enormous volume changes during lithiation/delithiation are still a main obstacle avoiding the broad commercial use of Si-based electrodes. In this work, Si-based thin film electrodes, prepared by magnetron sputtering, are studied. Herein, we present a sophisticated surface design and electrode structure modification by amorphous carbon layers to increase the mechanical integrity and, thus, the electrochemical performance. Therefore, the influence of amorphous C thin film layers, either deposited on top (C/Si) or incorporated between the amorphous Si thin film layers (Si/C/Si)...

Journal ArticleDOI
TL;DR: In this paper, the most recent progress in this field is reviewed, covering the integration approaches of III-V-to-silicon bonding, transfer printing, epitaxial growth and the use of colloidal quantum dots.
Abstract: Silicon does not emit light efficiently, therefore the integration of other light-emitting materials is highly demanded for silicon photonic integrated circuits. A number of integration approaches have been extensively explored in the past decade. Here, the most recent progress in this field is reviewed, covering the integration approaches of III-V-to-silicon bonding, transfer printing, epitaxial growth and the use of colloidal quantum dots. The basic approaches to create waveguide-coupled on-chip light sources for different application scenarios are discussed, both for silicon and silicon nitride based waveguides. A selection of recent representative device demonstrations is presented, including high speed DFB lasers, ultra-dense comb lasers, short (850nm) and long (2.3 mu m) wavelength lasers, wide-band LEDs, monolithic O-band lasers and micro-disk lasers operating in the visible. The challenges and opportunities of these approaches are discussed.

Journal ArticleDOI
TL;DR: In this paper, a heat treatment specific for selective laser melted (SLM) AlSi10Mg products is studied, based on the results of differential scanning calorimetry (DSC) and scanning electron microscopy (SEM); two exothermic phenomena were recognized, kinetically analyzed and associated to the precipitation of Mg2Si and to the rupture and spheroidization of the silicon network.

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate a highly conductive and thermally stable electrode composed of a magnesium oxide/aluminium (MgOx/Al) contact, achieving moderately low resistivity Ohmic contacts on lightly doped n-type c-Si.
Abstract: A high Schottky barrier (>0.65 eV) for electrons is typically found on lightly doped n-type crystalline (c-Si) wafers for a variety of contact metals. This behavior is commonly attributed to the Fermi-level pinning effect and has hindered the development of n-type c-Si solar cells, while its p-type counterparts have been commercialized for several decades, typically utilizing aluminium alloys in full-area, and more recently, partial-area rear contact configurations. Here the authors demonstrate a highly conductive and thermally stable electrode composed of a magnesium oxide/aluminium (MgOx/Al) contact, achieving moderately low resistivity Ohmic contacts on lightly doped n-type c-Si. The electrode, functionalized with nanoscale MgOx films, significantly enhances the performance of n-type c-Si solar cells to a power conversion efficiency of 20%, advancing n-type c-Si solar cells with full-area dopant-free rear contacts to a point of competitiveness with the standard p-type architecture. The low thermal budget of the cathode formation, its dopant-free nature, and the simplicity of the device structure enabled by the MgOx/Al contact open up new possibilities in designing and fabricating low-cost optoelectronic devices, including solar cells, thin film transistors, or light emitting diodes.

Journal ArticleDOI
TL;DR: In this paper, a nanostructured silicon/carbon anode derived from low-cost HSiCl 3 is tailored by the rational choice of the electrolyte component, to obtain an anode material outperforming current complex silicon structures.

Journal ArticleDOI
TL;DR: In this paper, the pomegranate structure is realized in the silicon/carbon (Si/C) composite spheres, in which Si nanoparticles of 50-100 nm are embedded into the mesoporous carbon chamber with pores of 3-4 nm.
Abstract: It is a research hotspot to develop advanced anodes with high capacity and good high-rate cyclability for lithium ion batteries. In this work, we develop a facile way to design and fabricate a silicon/carbon spherical composite by encapsulating Si nanoparticles into a mesoporous carbon matrix via a one-step hydrothermal method. Interestingly, the pomegranate structure is realized in the silicon/carbon (Si/C) composite spheres, in which Si nanoparticles of 50–100 nm are just like “pomegranate seeds” embedded into the mesoporous “pomegranate carbon chamber” with pores of 3–4 nm. This unique porous pomegranate structure can not only ensure good electrical conductivity for active Si, but also accommodate the huge volume change during cycles as well as facilitate the fast diffusion of Li ions. When evaluated as an anode for LIBs, the designed pomegranate-structured Si/C composite spheres deliver an excellent cycling stability of 581 mA h g−1 at a current density of 0.2 A g−1 after 100 cycles and achieve a noticeable high-rate capacity of 421 mA h g−1 even at a high current density of 1 A g−1, much better than those of the bare silicon electrode. Our developed facile synthetic strategy shows a new way for large-scale production of high-performance anodes for electrochemical energy storage.