scispace - formally typeset
Search or ask a question
Topic

Silicon

About: Silicon is a research topic. Over the lifetime, 196073 publications have been published within this topic receiving 3038411 citations. The topic is also known as: element 14 & Si.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that anodes consisting of an active silicon nanotube surrounded by an ion-permeable silicon oxide shell can cycle over 6,000 times in half cells while retaining more than 85% of their initial capacity.
Abstract: Although the performance of lithium ion-batteries continues to improve, their energy density and cycle life remain insufficient for applications in consumer electronics, transport and large-scale renewable energy storage. Silicon has a large charge storage capacity and this makes it an attractive anode material, but pulverization during cycling and an unstable solid-electrolyte interphase has limited the cycle life of silicon anodes to hundreds of cycles. Here, we show that anodes consisting of an active silicon nanotube surrounded by an ion-permeable silicon oxide shell can cycle over 6,000 times in half cells while retaining more than 85% of their initial capacity. The outer surface of the silicon nanotube is prevented from expansion by the oxide shell, and the expanding inner surface is not exposed to the electrolyte, resulting in a stable solid-electrolyte interphase. Batteries containing these double-walled silicon nanotube anodes exhibit charge capacities approximately eight times larger than conventional carbon anodes and charging rates of up to 20C (a rate of 1C corresponds to complete charge or discharge in one hour).

2,133 citations

Journal ArticleDOI
TL;DR: It is demonstrated that ordered arrays of silicon nanowires increase the path length of incident solar radiation by up to a factor of 73, which is above the randomized scattering (Lambertian) limit and is superior to other light-trapping methods.
Abstract: Thin-film structures can reduce the cost of solar power by using inexpensive substrates and a lower quantity and quality of semiconductor material. However, the resulting short optical path length and minority carrier diffusion length necessitates either a high absorption coefficient or excellent light trapping. Semiconducting nanowire arrays have already been shown to have low reflective losses compared to planar semiconductors, but their light-trapping properties have not been measured. Using optical transmission and photocurrent measurements on thin silicon films, we demonstrate that ordered arrays of silicon nanowires increase the path length of incident solar radiation by up to a factor of 73. This extraordinary light-trapping path length enhancement factor is above the randomized scattering (Lambertian) limit (2n2 ∼ 25 without a back reflector) and is superior to other light-trapping methods. By changing the silicon film thickness and nanowire length, we show that there is a competition between impr...

2,115 citations

Book
18 Mar 1982
TL;DR: In this article, the authors present a method for extracting interface trap properties from the conductance of a metal oxide Silicon Capacitor at intermediate and high frequency intervals, and demonstrate that these properties can be used for charge trapping in the oxide.
Abstract: Introduction. Field Effect. Metal Oxide Silicon Capacitor at Low Frequencies. Metal Oxide Silicon Capacitor at Intermediate and High Frequencies. Extraction of Interface Trap Properties from the Conductance. Interfacial Nonuniformities. Experimental Evidence for Interface Trap Properties. Extraction of Interface Trap Properties from the Capacitance. Measurement of Silicon Properties. Charges, Barrier Heights, and Flatband Voltage. Charge Trapping in the Oxide. Instrumentation for Measuring Capacitor Characteristics. Oxidation of Silicon--Oxidation Kinetics. Oxidation of Silicon--Technology. Control of Oxide Charges. Models of the Interface. Appendices. Subject Index. Symbol Index.

2,101 citations

Journal ArticleDOI
TL;DR: The design is inspired by the structure of a pomegranate, where single silicon nanoparticles are encapsulated by a conductive carbon layer that leaves enough room for expansion and contraction following lithiation and delithiation, resulting in superior cyclability and Coulombic efficiency.
Abstract: Silicon is an attractive material for anodes in energy storage devices1,2,3, because it has ten times the theoretical capacity of its state-of-the-art carbonaceous counterpart. Silicon anodes can be used both in traditional lithium-ion batteries and in more recent Li–O2 and Li–S batteries as a replacement for the dendrite-forming lithium metal anodes. The main challenges associated with silicon anodes are structural degradation and instability of the solid-electrolyte interphase caused by the large volume change (∼300%) during cycling, the occurrence of side reactions with the electrolyte, and the low volumetric capacity when the material size is reduced to a nanometre scale4,5,6,7. Here, we propose a hierarchical structured silicon anode that tackles all three of these problems. Our design is inspired by the structure of a pomegranate, where single silicon nanoparticles are encapsulated by a conductive carbon layer that leaves enough room for expansion and contraction following lithiation and delithiation. An ensemble of these hybrid nanoparticles is then encapsulated by a thicker carbon layer in micrometre-size pouches to act as an electrolyte barrier. As a result of this hierarchical arrangement, the solid-electrolyte interphase remains stable and spatially confined, resulting in superior cyclability (97% capacity retention after 1,000 cycles). In addition, the microstructures lower the electrode–electrolyte contact area, resulting in high Coulombic efficiency (99.87%) and volumetric capacity (1,270 mAh cm−3), and the cycling remains stable even when the areal capacity is increased to the level of commercial lithium-ion batteries (3.7 mAh cm−2). A Si anode with hierarchical morphology can accommodate large volume changes, demonstrates high Coulombic efficiency and cyclability as well as an areal capacity comparable to that of commercial Li-ion batteries.

2,094 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured the far-infrared absorption and dispersion from 0.2 to 2 THz of the crystalline dielectrics sapphire and quartz, fused silica, and the semiconductors silicon, gallium arsenide, and germanium.
Abstract: Using the method of time-domain spectroscopy, we measure the far-infrared absorption and dispersion from 0.2 to 2 THz of the crystalline dielectrics sapphire and quartz, fused silica, and the semiconductors silicon, gallium arsenide, and germanium. For sapphire and quartz, the measured absorptions are consistent with the earlier work below 0.5 THz. Above 1 THz we measure significantly more absorption for sapphire, while for quartz our values are in reasonable agreement with those of the previous work. Our results on high-purity fused silica are consistent with those on the most transparent fused silica measured to date. For the semiconductors, we show that many of the previous measurements on silicon were dominated by the effects of carriers due to impurities. For high-resistivity, 10-kΩ cm silicon, we measure a remarkable transparency together with an exceptionally nondispersive index of refraction. For GaAs our measurements extend the precision of the previous work, and we resolve two weak absorption features at 0.4 and 0.7 THz. Our measurements on germanium demonstrate the dominant role of intrinsic carriers; the measured absorption and dispersion are well fitted by the simple Drude theory.

2,084 citations


Network Information
Related Topics (5)
Thin film
275.5K papers, 4.5M citations
95% related
Band gap
86.8K papers, 2.2M citations
93% related
Oxide
213.4K papers, 3.6M citations
93% related
Amorphous solid
117K papers, 2.2M citations
92% related
Dielectric
169.7K papers, 2.7M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20233,196
20226,870
20213,087
20204,653
20195,697