scispace - formally typeset
Topic

Silicon nitride

About: Silicon nitride is a(n) research topic. Over the lifetime, 32678 publication(s) have been published within this topic receiving 413599 citation(s). The topic is also known as: N₄Si₃.


Papers
More filters
Journal ArticleDOI

[...]

30 May 1997-Science
TL;DR: In this paper, dense periodic arrays of holes and dots have been fabricated in a silicon nitride-coated silicon wafer and transferred directly to the underlying silicon oxide layer by two complementary techniques.
Abstract: Dense periodic arrays of holes and dots have been fabricated in a silicon nitride–coated silicon wafer. The holes are 20 nanometers across, 40 nanometers apart, and hexagonally ordered with a polygrain structure that has an average grain size of 10 by 10. Spin-coated diblock copolymer thin films with well-ordered spherical or cylindrical microdomains were used as the templates. The microdomain patterns were transferred directly to the underlying silicon nitride layer by two complementary techniques that resulted in opposite tones of the patterns. This process opens a route for nanometer-scale surface patterning by means of spontaneous self-assembly in synthetic materials on length scales that are difficult to obtain by standard semiconductor lithography techniques.

1,881 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, the etch rates of 53 materials that are used or potentially can be used or in the fabrication of microelectromechanical systems and integrated circuits were prepared.
Abstract: Samples of 53 materials that are used or potentially can be used or in the fabrication of microelectromechanical systems and integrated circuits were prepared: single-crystal silicon with two doping levels, polycrystalline silicon with two doping levels, polycrystalline germanium, polycrystalline SiGe, graphite, fused quartz, Pyrex 7740, nine other preparations of silicon dioxide, four preparations of silicon nitride, sapphire, two preparations of aluminum oxide, aluminum, Al/2%Si, titanium, vanadium, niobium, two preparations of tantalum, two preparations of chromium, Cr on Au, molybdenum, tungsten, nickel, palladium, platinum, copper, silver, gold, 10 Ti/90 W, 80 Ni/20 Cr, TiN, four types of photoresist, resist pen, Parylene-C, and spin-on polyimide. Selected samples were etched in 35 different etches: isotropic silicon etchant, potassium hydroxide, 10:1 HF, 5:1 BHF, Pad Etch 4, hot phosphoric acid, Aluminum Etchant Type A, titanium wet etchant, CR-7 chromium etchant, CR-14 chromium etchant, molybdenum etchant, warm hydrogen peroxide, Copper Etchant Type CE-200, Copper Etchant APS 100, dilute aqua regia, AU-5 gold etchant, Nichrome Etchant TFN, hot sulfuric+phosphoric acids, Piranha, Microstrip 2001, acetone, methanol, isopropanol, xenon difluoride, HF+H/sub 2/O vapor, oxygen plasma, two deep reactive ion etch recipes with two different types of wafer clamping, SF/sub 6/ plasma, SF/sub 6/+O/sub 2/ plasma, CF/sub 4/ plasma, CF/sub 4/+O/sub 2/ plasma, and argon ion milling. The etch rates of 620 combinations of these were measured. The etch rates of thermal oxide in different dilutions of HF and BHF are also reported. Sample preparation and information about the etches is given.

1,191 citations

Journal ArticleDOI

[...]

I. A. Blech1
TL;DR: In this paper, the aluminum electromigration drift velocity was measured at the temperature range 250-400°C and an activation energy of 0.65 eV was found for the drift velocity, which was explained by opposing chemical gradients created by the atom pile-up and depletion at the stripe ends.
Abstract: The aluminum electromigration drift velocity was measured at the temperature range 250–400 °C. A threshold current density was found inversely proportional to the stripe length. An activation energy of 0.65 eV was found for the drift velocity. The occurrence of the threshold is explained by opposing chemical gradients created by the atom pile‐up and depletion at the stripe ends. The threshold may explain several observations reported previously. The threshold is increased by decreasing the temperature or by enclosing the aluminum in silicon nitride. Virtually no electromigration is seen for very short aluminum stripes even at current densities above 106 A/cm2.

1,124 citations

Journal ArticleDOI

[...]

TL;DR: Silicon nitride has been researched intensively, largely in response to the challenge to develop internal combustion engines with hot-zone components made entirely from ceramics as mentioned in this paper, but this research effort has succeeded in generating a degree of understanding of silicon nitride and of its processing and properties.
Abstract: Silicon nitride has been researched intensively, largely in response to the challenge to develop internal combustion engines with hot-zone components made entirely from ceramics. The ceramic engine programs have had only partial success, but this research effort has succeeded in generating a degree of understanding of silicon nitride and of its processing and properties, which in many respects is more advanced than of more widely used technical ceramics. This review examines from the historical standpoint the development of silicon nitride and of its processing into a range of high-grade ceramic materials. The development of understanding of microstructure–property relationships in the silicon nitride materials is also surveyed. Because silicon nitride has close relationships with the SiAlON group of materials, it is impossible to discuss the one without some reference to the other, and a brief mention of the development of the SiAlONs is included for completeness.

1,116 citations

Journal ArticleDOI

[...]

TL;DR: The etch rates for 317 combinations of 16 materials (single-crystal silicon, doped, and undoped polysilicon, several types of silicon dioxide, stoichiometric and silicon-rich silicon nitride, aluminum, tungsten, titanium, Ti/W alloy, and two brands of positive photoresist) used in the fabrication of microelectromechanical systems and integrated circuits in 28 wet, plasma, and plasmaless-gas-phase etches (several HF solutions, H/sub 3/PO/sub 4), HNO/sub
Abstract: The etch rates for 317 combinations of 16 materials (single-crystal silicon, doped, and undoped polysilicon, several types of silicon dioxide, stoichiometric and silicon-rich silicon nitride, aluminum, tungsten, titanium, Ti/W alloy, and two brands of positive photoresist) used in the fabrication of microelectromechanical systems and integrated circuits in 28 wet, plasma, and plasmaless-gas-phase etches (several HF solutions, H/sub 3/PO/sub 4/, HNO/sub 3/+H/sub 2/O+NH/sub 4/F, KOH, Type A aluminum etchant, H/sub 2/O+H/sub 2/O/sub 2/+HF, H/sub 2/O/sub 2/, piranha, acetone, HF vapor, XeF/sub 2/, and various combinations of SF/sub 6/, CF/sub 4/, CHF/sub 3/, Cl/sub 2/, O/sub 2/, N/sub 2/, and He in plasmas) were measured and are tabulated. Etch preparation, use, and chemical reactions (from the technical literature) are given. Sample preparation and MEMS applications are described for the materials.

912 citations


Network Information
Related Topics (5)
Thin film
275.5K papers, 4.5M citations
93% related
Silicon
196K papers, 3M citations
93% related
Amorphous solid
117K papers, 2.2M citations
90% related
Oxide
213.4K papers, 3.6M citations
90% related
Dielectric
169.7K papers, 2.7M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202211
2021418
2020686
2019994
2018911
2017978