scispace - formally typeset
Search or ask a question
Topic

Silicon nitride

About: Silicon nitride is a research topic. Over the lifetime, 32678 publications have been published within this topic receiving 413599 citations. The topic is also known as: N₄Si₃.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors take a closer look at the interaction between bulk passivation of multi-Si by PECVD SiN x and the alloying process when forming an Al-BSF layer.

242 citations

Journal ArticleDOI
TL;DR: In this paper, the electrical properties of silicon nitride/amorphous silicon structures were investigated using thin film transistors (TFTs) and metal insulator semiconductor (MIS) devices employing either a top nitride (TN) or bottom nitride(BN) as gate insulator.
Abstract: The electrical properties of silicon nitride/amorphous silicon structures were investigated using thin film transistors (TFTs) and metal insulator semiconductor (MIS) devices employing either a top nitride (TN) or bottom nitride (BN) as gate insulator. The density of states (DOS) deduced from the subthreshold transfer characteristic of the TFTs is one to two orders of magnitude higher than that obtained from quasistatic C(V) measurements on the MIS structures. This difference is discussed by considering the different thickness of the a‐Si:H layers of the two devices and the role of a fixed charge at the rear interface. Both techniques indicate a DOS in BN devices which is only slightly lower than in TN devices, by less than a factor of two. The measured field effect mobility of BN TFTs is about 70% higher. The differences in the measured field effect mobility for TN and BN configuration are discussed and ascribed to the source and drain parasitic resistances. The conclusion is verified by the fabrication of a TN TFT with a pure phosphine rear surface treatment, which exhibits performance comparable to BN TFTs.

241 citations

Journal ArticleDOI
TL;DR: In this paper, the photoluminescence peak energy was fitted to the relationship, E(eV)=1.13+13.9∕d2, where d is the diameter of the Si QD in nanometers.
Abstract: Crystalline silicon quantum dots (Si QDs) were spontaneously grown in the silicon nitride films by plasma-enhanced chemical vapor deposition using SiH4 and NH3 as precursors. When the size of the Si QDs was reduced from 4.9 to 2.9nm, the photoluminescence peak energy was shifted from 1.73 to 2.77eV. The photoluminescence peak energy was fitted to the relationship, E(eV)=1.13+13.9∕d2, where d is the diameter of the Si QD in nanometers. The measured band-gap energies of the Si QDs were in good agreement with the quantum confinement model for crystalline Si QDs. These results suggest that the hydrogen dissociated from NH3 plays an important role in improving the crystallinity and surface passivation of Si QDs.

239 citations

Journal ArticleDOI
TL;DR: In this paper, the active-to-passive transition in the oxidation of SiC and Si3N4 was determined in a flowing air environment as a function of temperature and total pressure, and the experimentally observed transition temperatures ranged from a low of 1347 C to a high of 1543 C for partial pressures of oxygen of 2.5 and 123.2 Pa, respectively.
Abstract: The active-to-passive transition in the oxidation of SiC and Si3N4 was determined in a flowing air environment as a function of temperature and total pressure. The experimentally observed transition temperatures ranged from a low of 1347 C to a high of 1543 C for partial pressures of oxygen of 2.5 and 123.2 Pa, respectively. The SiC and Si3N4 samples had approximately the same transition point for a given pressure. In general, the higher the flow rate, the higher the transition temperature for a given pressure. The transitions for SiC measured in this study agree with previous data for the transition of SiC measured in pure oxygen at reduced pressures and in oxygen inert gas mixtures.

238 citations

Patent
06 Mar 2001
TL;DR: In this paper, a graded gate dielectric is provided, even for extremely thin layers, whereby the composition of the film can be varied from monolayer to monollayer during cycles including alternating pulses of self-limiting chemistries.
Abstract: Thin films are formed by atomic layer deposition, whereby the composition of the film can be varied from monolayer to monolayer during cycles including alternating pulses of self-limiting chemistries. In the illustrated embodiments, varying amounts of impurity sources are introduced during the cyclical process. A graded gate dielectric is thereby provided, even for extremely thin layers. The gate dielectric as thin as 2 nm can be varied from pure silicon oxide to oxynitride to silicon nitride. Similarly, the gate dielectric can be varied from aluminum oxide to mixtures of aluminum oxide and a higher dielectric material (e.g., ZrO 2 ) to pure high k material and back to aluminum oxide. In another embodiment, metal nitride (e.g., WN) is first formed as a barrier for lining dual damascene trenches and vias. During the alternating deposition process, copper can be introduced, e.g., in separate pulses, and the copper source pulses can gradually increase in frequency, forming a graded transition region, until pure copper is formed at the upper surface. Advantageously, graded compositions in these and a variety of other contexts help to avoid such problems as etch rate control, electromigration and non-ohmic electrical contact that can occur at sharp material interfaces.

237 citations


Network Information
Related Topics (5)
Thin film
275.5K papers, 4.5M citations
93% related
Silicon
196K papers, 3M citations
93% related
Amorphous solid
117K papers, 2.2M citations
90% related
Oxide
213.4K papers, 3.6M citations
90% related
Dielectric
169.7K papers, 2.7M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023245
2022529
2021421
2020686
2019994
2018911