scispace - formally typeset
Search or ask a question
Topic

Silicon nitride

About: Silicon nitride is a research topic. Over the lifetime, 32678 publications have been published within this topic receiving 413599 citations. The topic is also known as: N₄Si₃.


Papers
More filters
Book ChapterDOI
01 Jan 2006
TL;DR: In this article, the lattice thermal conductivity of various classes of crystalline solids is reviewed, with emphasis on materials with κ > 0.5Wcm−1K−1.
Abstract: The lattice thermal conductivity κ of various classes of crystalline solids is reviewed, with emphasis on materials with κ > 0.5Wcm−1K−1. A simple model for the magnitude of the lattice thermal conductivity at temperatures near the Debye temperature is presented and compared to experimental data on rocksalt, zincblende, diamond, and wurtzite structure compounds, graphite, silicon nitride and related materials, and icosahedral boron compounds. The thermal conductivity of wide-band-gap Group IV and Group III-V semiconductors is discussed, and the enhancement of lattice thermal conductivity by isotopic enrichment is considered.

235 citations

Patent
Robert D. Clark1
30 Mar 2007
TL;DR: In this paper, a method for forming a strained SiN film and a semiconductor device containing the strained siN film is presented. But the method is not suitable for the case of semiconductor devices, as it requires the substrate to be exposed to a gas including a silicon precursor, and the substrate is configured to react with the silicon precursor with a second reactivity characteristic.
Abstract: A method for forming a strained SiN film and a semiconductor device containing the strained SiN film. The method includes exposing the substrate to a gas including a silicon precursor, exposing the substrate to a gas containing a nitrogen precursor activated by a plasma source at a first level of plasma power and configured to react with the silicon precursor with a first reactivity characteristic, and exposing the substrate to a gas containing the nitrogen precursor activated by the plasma source at a second level of plasma power different from the first level and configured to react with the silicon precursor with a second reactivity characteristic such that a property of the silicon nitride film formed on the substrate changes to provide the strained silicon nitride film.

235 citations

Journal ArticleDOI
TL;DR: In this paper, a variant of the scanning capacitance microscope (SCaM) is described, which is based on the atomic force microscope and involves a cantilever beam that is used to press a conducting tip against a conducting substrate coated with a dielectric film.
Abstract: In this paper we describe a variant of the scanning capacitance microscope (SCaM) which is based on the atomic force microscope. Our SCaM involves a cantilever beam that is used to press a conducting tip against a conducting substrate coated with a dielectric film. A capacitance sensor is then used to measure the tip‐sample capacitance as a function of lateral position. The deflection of the cantilever can also be used to measure independently the surface topography. This microscope can be used to measure electrical properties of dielectric films and their underlying substrates. We have applied this microscope to the study of the nitride‐oxide‐silicon (NOS) system. This system has been studied extensively because of its ability to store information by trapping charge in the silicon nitride. Commercial semiconductor nonvolatile memories have been designed using this NOS technology. We have used the SCaM tip to apply a localized bias to the NOS sample, causing charge to tunnel through the oxide layer and to...

235 citations

Journal ArticleDOI
TL;DR: In this article, temperature-dependent measurements of thin-film transistors were performed to gain insight in the electronic transport of polycrystalline pentacene, and the influence of the dielectric roughness and the deposition temperature of the thermally evaporated pentaene films were studied.
Abstract: Temperature-dependent measurements of thin-film transistors were performed to gain insight in the electronic transport of polycrystalline pentacene. Devices were fabricated with plasma-enhanced chemical vapor deposited silicon nitride gate dielectrics. The influence of the dielectric roughness and the deposition temperature of the thermally evaporated pentacene films were studied. Although films on rougher gate dielectrics and films prepared at low deposition temperatures exhibit similar grain size, the electronic properties are different. Increasing the dielectric roughness reduces the free carrier mobility, while low substrate temperature leads to more and deeper hole traps.

234 citations

Journal ArticleDOI
TL;DR: In this paper, the advantages and challenges associated with these two material platforms are discussed, and the case of dispersive spectrometers, which are widely used in various silicon photonic applications, is presented.
Abstract: The high index contrast silicon-on-insulator platform is the dominant CMOS compatible platform for photonic integration. The successful use of silicon photonic chips in optical communication applications has now paved the way for new areas where photonic chips can be applied. It is already emerging as a competing technology for sensing and spectroscopic applications. This increasing range of applications for silicon photonics instigates an interest in exploring new materials, as silicon-on-insulator has some drawbacks for these emerging applications, e.g., silicon is not transparent in the visible wavelength range. Silicon nitride is an alternate material platform. It has moderately high index contrast, and like silicon-on-insulator, it uses CMOS processes to manufacture photonic integrated circuits. In this paper, the advantages and challenges associated with these two material platforms are discussed. The case of dispersive spectrometers, which are widely used in various silicon photonic applications, is presented for these two material platforms.

234 citations


Network Information
Related Topics (5)
Thin film
275.5K papers, 4.5M citations
93% related
Silicon
196K papers, 3M citations
93% related
Amorphous solid
117K papers, 2.2M citations
90% related
Oxide
213.4K papers, 3.6M citations
90% related
Dielectric
169.7K papers, 2.7M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023245
2022529
2021421
2020686
2019994
2018911