scispace - formally typeset
Search or ask a question
Topic

Silicon nitride

About: Silicon nitride is a research topic. Over the lifetime, 32678 publications have been published within this topic receiving 413599 citations. The topic is also known as: N₄Si₃.


Papers
More filters
Patent
08 Apr 2002
TL;DR: In this paper, the authors present a method of integration of titanium and titanium nitride layers using a passivation layer, which may include titanium silicide, titanium silicon nitride, and combinations thereof.
Abstract: Embodiments of the present invention generally relate to an apparatus and method of integration of titanium and titanium nitride layers. One embodiment includes providing one or more cycles of a first set of compounds, providing one or more cycles of a second set of compounds, and providing one or more cycles of a third set of compounds. One cycle of the first set of compounds includes introducing a titanium precursor and a reductant. One cycle of the second set of compounds includes introducing the titanium precursor and a silicon precursor. One cycle of the third set of compounds includes introducing the titanium precursor and a nitrogen precursor. Another embodiment includes depositing a titanium layer utilizing titanium halide. Then, a passivation layer is deposited over the titanium layer utilizing titanium halide. The passivation layer may comprise titanium silicide, titanium silicon nitride, and combinations thereof. Then, a titanium nitride layer is deposited over the passivation layer utilizing titanium halide. Still another embodiment comprises depositing a titanium layer over a surface of a substrate. Then, the titanium layer is treated with a soak with a silicon precursor at a substrate temperature of about 550° C. or less to form a treated titanium layer. Then, a titanium nitride layer is deposited over the treated titanium layer.

154 citations

Journal ArticleDOI
TL;DR: In this article, the authors measured the kinetics of densification and the phase transformation in hot-pressing of silicon nitride ceramics using magnesia as additive, and found that the rate was proportional to the amount of additive.
Abstract: The kinetics of densification and the kinetics of theα-β phase transformation have been measured during the hot-pressing of silicon nitride ceramics using magnesia as additive. Two mechanisms of densification have been identified. The first is a very rapid particle rearrangement, liquid-enhanced above 1550° C, which operates up to relative densities of about 0.65. The kinetics of the much slower decelerating second stage obey the Coble hot-pressing equation and the rate of densification is found to be proportional to the amount of additive. The controlling mechanism is believed to be diffusion in a boundary second phase, and values for the diffusion coefficient,D b, of the rate-controlling species in the boundary phase for temperatures above and below 1550° C are given. The kinetics of theα toβ transformation, the greater part of which occurs after densification is complete, are described by a first order reaction; the dependence of rate on the quantity of additive and on temperature is similar to that found for densification, and a similar controlling mechanism is believed to be responsible for the two processes.

154 citations

Journal ArticleDOI
TL;DR: In this article, the authors reported very low values of surface recombination velocity (S eff ) for hydrogenated silicon nitride (SiN x :H) that lead to efficient surface and bulk passivation of the silicon substrate.

154 citations

Patent
24 Apr 1995
TL;DR: In this paper, a method for etching a silicon nitride film, including the steps of supplying a fluorine radical, a compound of fluorine and hydrogen, and an oxygen radical close to a substrate having the silicon-nide film, was presented.
Abstract: A method for etching a silicon nitride film, includes the steps of supplying a fluorine radical, a compound of fluorine and hydrogen, and an oxygen radical close to a substrate having the silicon nitride film, and selectively etching the silicon nitride film from the substrate with the fluorine radical, the compound of fluorine and hydrogen, and the oxygen radical. A method for etching a silicon nitride film, includes the steps of exciting gas containing fluorine and oxygen gas, thereby generating a fluorine radical and an oxygen radical, supplying the fluorine radical and the oxygen radical close to a substrate having the silicon nitride film and supplying gas of a compound containing a hydroxyl close to the substrate, reacting the fluorine radical, the oxygen radical and the compound containing the hydroxyl, thereby generating a compound of the fluorine radical, the oxygen radical and a compound of fluorine and hydrogen, and selectively etching the silicon nitride film from the substrate with the compound of the fluorine radical, the oxygen radical and the compound of fluorine and hydrogen.

153 citations

Patent
Leonard Forbes1
14 Nov 1997
TL;DR: Local Oxidation of Silicon (LOCOS) as discussed by the authors was used to partially undercut narrow rows of silicon in the substrate and then a subsequent oxidation step fully undercuts the rows, isolating the silicon rows from adjacent active areas.
Abstract: Using sub-micron technology, silicon on insulator (SOI) rows and islands are formed in a silicon substrate. Trenches are directionally-etched in the silicon substrate, leaving rows of silicon between the trenches. Silicon nitride is then deposited over the trenches, extending partly down the sides of the trenches. An isotropic chemical etch is then used to partially undercut narrow rows of silicon in the substrate. A subsequent oxidation step fully undercuts the rows of silicon, isolating the silicon rows from adjacent active areas. Devices, such as transistors for CMOS and DRAMs, are then formed in active areas, wherein the active areas are defined on the silicon rows by LOCal Oxidation of Silicon (LOCOS).

153 citations


Network Information
Related Topics (5)
Thin film
275.5K papers, 4.5M citations
93% related
Silicon
196K papers, 3M citations
93% related
Amorphous solid
117K papers, 2.2M citations
90% related
Oxide
213.4K papers, 3.6M citations
90% related
Dielectric
169.7K papers, 2.7M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023245
2022529
2021421
2020686
2019994
2018911