scispace - formally typeset
Search or ask a question
Topic

Silicon nitride

About: Silicon nitride is a research topic. Over the lifetime, 32678 publications have been published within this topic receiving 413599 citations. The topic is also known as: N₄Si₃.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, two kinds of oxidation (passive and active) and active-to-passive transition of silicon-based ceramics were discussed thermodynamically, and the rate constants of passive/active oxidation and active topassive oxygen potentials for SiC and Si 3 N 4 were reviewed.
Abstract: Oxidation behavior of silicon-based ceramics such as SiC and Si 3 N 4 at high temperatures is important for their practical applications to structural or electronic materials. In the present paper two kinds of oxidation (passive and active) and active-to-passive transition of silicon-based ceramics were discussed thermodynamically, and the rate constants of passive/active oxidation and active-to-passive transition oxygen potentials for SiC and Si 3 N 4 were reviewed. Passive and active oxidation behavior depended on the microstructure of oxide films and SiO gas pressure on silicon-based ceramics, respectively. Wagner model, volatility diagram and solgasmix-based calculation were used to estimate the active-to-passive transition.

150 citations

Patent
08 Apr 2002
TL;DR: In this paper, the authors present a method of cyclical deposition utilizing three or more precursors in which delivery of at least two of the pre-computed precurors to a substrate structure at least partially overlap.
Abstract: Embodiments of the present invention relate to an apparatus and method of cyclical deposition utilizing three or more precursors in which delivery of at least two of the precursors to a substrate structure at least partially overlap. One embodiment of depositing a ternary material layer over a substrate structure comprises providing at least one cycle of gases to deposit a ternary material layer. One cycle comprises introducing a pulse of a first precursor, introducing a pulse of a second precursor, and introducing a pulse of a third precursor in which the pulse of the second precursor and the pulse of the third precursor at least partially overlap. In one aspect, the ternary material layer includes, but is not limited to, tungsten boron silicon (WBxSiy), titanium silicon nitride (TiSixNy), tantalum silicon nitride (TaSixNy), silicon oxynitride (SiOxNy), and hafnium silicon oxide (HfSixOy). In one aspect, the composition of the ternary material layer may be tuned by changing the flow ratio of the second precursor to the third precursor between cycles.

150 citations

Patent
01 May 2007
TL;DR: In this article, a plasma treatment for efficiently sealing the surface of a stressed dielectric layer containing silicon nitride was used to achieve an enhanced performance during the patterning of contact openings.
Abstract: By performing a plasma treatment for efficiently sealing the surface of a stressed dielectric layer containing silicon nitride, an enhanced performance during the patterning of contact openings may be achieved, since nitrogen-induced resist poisoning may be significantly reduced during the selective patterning of stressed layers of different types of intrinsic stress.

150 citations

Journal ArticleDOI
TL;DR: In this article, an analysis is presented of the relation between deposition parameters of microwave PECVD and material properties of silicon nitride, which is a very effective method for high-throughput deposition of silicon oxide layers with the required properties for bulk and surface passivation.
Abstract: Bulk and surface passivation by silicon nitride has become an indispensable element in industrial production of multicrystalline silicon (mc-Si) solar cells. Microwave PECVD is a very effective method for high-throughput deposition of silicon nitride layers with the required properties for bulk and surface passivation. In this paper an analysis is presented of the relation between deposition parameters of microwave PECVD and material properties of silicon nitride. By tuning the process conditions (substrate temperature, gas flows, working pressure) we have been able to fabricate silicon nitride layers which fulfill almost ideally the four major requirements for mc-Si solar cells: (1) good anti-reflection coating (refractive index tunable between 2·0 and 2·3); (2) good surface passivation on p-type FZ wafers (Seff<30 cm/s); (3) good bulk passivation (improvement of IQE at 1000 nm by 30% after short thermal anneal); (4) long-term stability (no observable degradation after several years of exposure to sunlight). By implementing this silicon nitride deposition in an inline production process of mc-Si solar cells we have been able to produce cells with an efficiency of 16·5%. Finally, we established that the continuous deposition process could be maintained for at least 20 h without interruption for maintenance. On this timescale we did not observe any significant changes in layer properties or cell properties. This shows the robustness of microwave PECVD for industrial production. Copyright © 2005 John Wiley & Sons, Ltd.

149 citations

Journal ArticleDOI
TL;DR: In this article, injection level dependent measurements of the effective surface recombination velocity Seff at silicon surfaces passivated by PECVD silicon nitride (SiNx) films are performed on monocrystalline silicon wafers of different resistivities and doping types.
Abstract: Using the light-biased microwave-detected photoconductance decay method, injection level dependent measurements of the effective surface recombination velocity Seff at silicon surfaces passivated by plasma-enhanced chemical vapor deposited (PECVD) silicon nitride (SiNx) films are performed on monocrystalline silicon wafers of different resistivities and doping types. In order to theoretically simulate the measured dependences of Seff on the bulk injection level Δn, the extended Shockley-Read-Hall formalism is used. Simulation input parameters are the energy dependent interface state densities and capture cross sections of the involved interface defects as well as the positive insulator charge density Qf. The energy dependent properties of the interface defects are experimentally determined by means of small-pulse deep-level transient spectroscopy. These measurements reveal the existence of three “deep” silicon dangling bond defects at the Si-SiNx interface with similar interface state densities but very d...

149 citations


Network Information
Related Topics (5)
Thin film
275.5K papers, 4.5M citations
93% related
Silicon
196K papers, 3M citations
93% related
Amorphous solid
117K papers, 2.2M citations
90% related
Oxide
213.4K papers, 3.6M citations
90% related
Dielectric
169.7K papers, 2.7M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023245
2022529
2021421
2020686
2019994
2018911