scispace - formally typeset
Search or ask a question
Topic

Silicon nitride

About: Silicon nitride is a research topic. Over the lifetime, 32678 publications have been published within this topic receiving 413599 citations. The topic is also known as: N₄Si₃.


Papers
More filters
Patent
15 Sep 2015
TL;DR: In this paper, the precursors for forming silicon nitride films are described and a method for depositing silicon-nitride films comprises a multi-step plasma treatment, which is a nitrogen plasma treatment.
Abstract: Methods and precursors for forming silicon nitride films are provided. In some embodiments, silicon nitride can be deposited by atomic layer deposition (ALD), such as plasma enhanced ALD. In some embodiments, deposited silicon nitride can be treated with a plasma treatment. The plasma treatment can be a nitrogen plasma treatment. In some embodiments the silicon precursors for depositing the silicon nitride comprise an iodine ligand. The silicon nitride films may have a relatively uniform etch rate for both vertical and the horizontal portions when deposited onto three-dimensional structures such as FinFETS or other types of multiple gate FETs. In some embodiments, various silicon nitride films of the present disclosure have an etch rate of less than half the thermal oxide removal rate with diluted HF (0.5%). In some embodiments, a method for depositing silicon nitride films comprises a multi-step plasma treatment.

132 citations

Journal ArticleDOI
TL;DR: In this article, a surface micromachined Fabry-Perot cavity used as a pressure sensor has been fabricated using standard IC technology using dielectric film stacks consisting of layers of silicon dioxide and silicon nitride as mirrors.
Abstract: A surface micromachined Fabry-Perot cavity used as a pressure sensor has been fabricated using standard IC technology. Dielectric film stacks consisting of layers of silicon dioxide and silicon nitride were used as mirrors. Polysilicon was used as a sacrificial layer that was then removed to form an air gap cavity. The Fabry-Perot sensor was optically interrogated using a multimode optical fiber. The measured response of the sensor agrees well with theoretical simulation, which takes into account the averaging effect caused by the shape of the deflected mirror in the cavity.

132 citations

Journal ArticleDOI
TL;DR: The authors demonstrate the first electro-optic modulators based on ferroelectric lead zirconate titanate films on silicon nitride, in both the O- and the C-band with a modulation bandwidth beyond 33 GHz and with data rates of 40 Gbps.
Abstract: Silicon nitride (SiN) is emerging as a competitive platform for CMOS-compatible integrated photonics. However, active devices such as modulators are scarce and still lack in performance. Ideally, such a modulator should have a high bandwidth, good modulation efficiency, low loss, and cover a wide wavelength range. Here, we demonstrate the first electro-optic modulators based on ferroelectric lead zirconate titanate (PZT) films on SiN, in both the O-band and C-band. Bias-free operation, bandwidths beyond 33 GHz and data rates of 40 Gbps are shown, as well as low propagation losses (α ≈ 1 dB cm−1). A half-wave voltage-length product of 3.2 V cm is measured. Simulations indicate that further improvement is possible. This approach offers a much-anticipated route towards high-performance phase modulators on SiN. Active devices such as modulators made of silicon nitride still lack performance. Here, the authors demonstrate electro-optic modulators based on ferroelectric lead zirconate titanate films on silicon nitride, in both the O- and the C-band with a modulation bandwidth beyond 33 GHz and with data rates of 40 Gbps.

132 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the transmission properties of the same systems by using the multiple-scattering method and found that the 12fold triangle-square tiling is indeed very good for the realization of photonic gaps.
Abstract: A recent publication [Nature (London) 404, 740 (2000)] claimed that absolute photonic gaps can be realized in 12-fold quasicrystalline arrangement of small airholes in a matrix of silicon nitride or glass. The result is rather surprising since silicon nitride $(n=2.02)$ and in particular, glass $(n=1.45)$ have rather low refractive index. In this work, we have studied the transmission properties of the same systems by using the multiple-scattering method. We found that the 12-fold triangle-square tiling is indeed very good for the realization of photonic gaps and we found absolute gaps in systems with airholes in dielectric, dielectric cylinders in air, and metal cylinders in air. However, for the case of air-holes in a dielectric background, absolute gaps appear only when the dielectric contrast is sufficiently high, and both silicon nitride and glass have refractive indices below the threshold.

132 citations

Patent
29 Oct 2004
TL;DR: In this paper, the authors describe a co-fired p-type silicon substrate, where the bulk lifetime is about 20 to 125 μs, and an n+ layer formed on the top-side of the p-silicon substrate, a silicon nitride anti-reflective (AR) layer positioned on top of the n-layer, and a plurality of Ag contacts positioned on portions of the silicon-nitride AR layer, wherein the Ag contacts are in electronic communication with the n+-type emitter layer.
Abstract: Devices, solar cell structures, and methods of fabrication thereof, are disclosed. Briefly described, one exemplary embodiment of the device, among others, includes: a co-fired p-type silicon substrate, wherein the bulk lifetime is about 20 to 125 μs; an n+ layer formed on the top-side of the p-silicon substrate; a silicon nitride anti-reflective (AR) layer positioned on the top-side of the n+ layer; a plurality of Ag contacts positioned on portions of the silicon nitride AR layer, wherein the Ag contacts are in electronic communication with the n+-type emitter layer; an uniform Al back-surface field (BSF or p+) layer positioned on the back-side of the p-silicon substrate on the opposite side of the p-type silicon substrate as the n+ layer; and an Al contact layer positioned on the back-side of the Al BSF layer. The device has a fill factor (FF) of about 0.75 to 0.85, an open circuit voltage (VOC) of about 600 to 650 mV, and a short circuit current (JSC) of about 28 to 36 mA/cm2.

131 citations


Network Information
Related Topics (5)
Thin film
275.5K papers, 4.5M citations
93% related
Silicon
196K papers, 3M citations
93% related
Amorphous solid
117K papers, 2.2M citations
90% related
Oxide
213.4K papers, 3.6M citations
90% related
Dielectric
169.7K papers, 2.7M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023245
2022529
2021421
2020686
2019994
2018911