scispace - formally typeset
Search or ask a question
Topic

Silicon on insulator

About: Silicon on insulator is a research topic. Over the lifetime, 19592 publications have been published within this topic receiving 302534 citations. The topic is also known as: SOI.


Papers
More filters
Book
01 Sep 1987
TL;DR: An overview of microelectronic fabrication can be found in this paper, where the authors provide a historical perspective on the development and evolution of many of the technologies used in the fabrication process.
Abstract: (NOTE: Each chapter concludes with Summary, References, and Problems) Preface 1 An Overview of Microelectronic Fabrication A Historical Perspective An Overview of Monolithic Fabrication Processes and Structures Metal-Oxide-Semiconductor (MOS) Processes Basic Bipolar Processing Safety 2 Lithography The Photolithographic Process Etching Techniques Photomask Fabrication Exposure Systems Exposure Sources Optical and Electron Microscopy Further Reading 3 Thermal Oxidation of Silicon The Oxidation Process Modeling Oxidation Factors Influencing Oxidation Rate Dopant Redistribution During Oxidation Masking Properties of Silicon Dioxide Technology of Oxidation Oxide Quality Selective Oxidation and Shallow Trench Formation Oxide Thickness Characterization Process Simulation 4 Diffusion The Diffusion Process Mathematical Model for Diffusion The Diffusion Coefficient Successive Diffusions Solid-Solubility Limits Junction Formation and Characterization Sheet Resistance Generation-Depth and Impurity Profile Measurement Diffusion Simulation Diffusion Systems Gettering 5 Ion Implantation Implantation Technology Mathematical Model for Ion Implantation Selective Implantation Junction Depth and Sheet Resistance Channeling, Lattice Damage, and Annealing Shallow Implantation Source Listing 6 Film Deposition Evaporation Sputtering Chemical Vapor Deposition Epitaxy Further Reading 7 Interconnections and Contacts Interconnections in Integrated Circuits Metal Interconnections and Contact Technology Diffused Interconnections Polysilicon Interconnections and Buried Contacts Silicides and Multilayer-Contact Technology The Liftoff Process Multilevel Metallization Copper Interconnects and Damascene Processes Further Reading 8 Packaging and Yield Testing Wafer Thinning and Die Separation Die Attachment Wire Bonding Packages Flip-Chip and Tape-Automated-Bonding Processes Yield Further Reading 9 MOS Process Integration Basic MOS Device Considerations MOS Transistor Layout and Design Rules Complementary MOS (CMOS) Technology Silicon on Insulator 10 Bipolar Process Integration The Junction-Isolated Structure Current Gain Transit Time Basewidth Breakdown Voltages Other Elements in SBC Technology Layout Considerations Advanced Bipolar Structures Other Bipolar Isolation Techniques BICMOS 11 Processes for Microelectromechanical Systems-MEMS Mechanical Properties of Silicon Bulk Micromachining Silicon Etchants Surface Micromachining High-Aspect-Ratio Micromachining: The LIGA Molding Process Silicon Wafer Bonding IC Process Compatibility Answers to Selected Problems Index

721 citations

Journal ArticleDOI
Kinam Kim1, Jae-Young Choi1, Taek Kim1, Seong-Ho Cho1, Hyun-Jong Chung1 
17 Nov 2011-Nature
TL;DR: Graphene is unlikely to replace silicon completely, however, because of the poor on/off current ratio resulting from its zero bandgap, but it could be used to improve silicon-based devices, in particular in high-speed electronics and optical modulators.
Abstract: As silicon-based electronics approach the limit of improvements to performance and capacity through dimensional scaling, attention in the semiconductor field has turned to graphene, a single layer of carbon atoms arranged in a honeycomb lattice. Its high mobility of charge carriers (electrons and holes) could lead to its use in the next generation of high-performance devices. Graphene is unlikely to replace silicon completely, however, because of the poor on/off current ratio resulting from its zero bandgap. But it could be used to improve silicon-based devices, in particular in high-speed electronics and optical modulators.

707 citations

Journal ArticleDOI
01 Dec 1993
TL;DR: In this article, a review of Si-based photonic components and optoelectronic integration techniques, both hybrid and monolithic, is presented, with a focus on column IV materials (Si, Ge, C and Sn).
Abstract: The decade of the 1990's is an opportune time for scientists and engineers to create cost-effective silicon "superchips" that merge silicon photonics with advanced silicon electronics on a silicon substrate. We can expect significant electrooptical devices from Column IV materials (Si, Ge, C and Sn) for a host of applications. The best devices will use strained-layer epitaxy, doped heterostructures, and bandgap engineering of quantum-confined structures. This paper reviews Si-based photonic components and optoelectronic integration techniques, both hybrid and monolithic. >

693 citations

Journal ArticleDOI
TL;DR: A high-efficiency broadband grating coupler for coupling between silicon-on-insulator (SOI) waveguides and optical fibers and the size of the grooves is optimized numerically.
Abstract: We have designed a high-efficiency broadband grating coupler for coupling between silicon-on-insulator (SOI) waveguides and optical fibers. The grating is only 13 µm long and 12 µm wide, and the size of the grooves is optimized numerically. For TE polarization the coupling loss to single-mode fiber is below 1 dB over a 35-nm wavelength range when using SOI with a two-pair bottom reflector. The tolerances to fabrication errors are also calculated.

676 citations

Journal ArticleDOI
11 May 2006-Nature
TL;DR: The strain-induced linear electro-optic effect may be used to remove a bottleneck in modern computers by replacing the electronic bus with a much faster optical alternative.
Abstract: For decades, silicon has been the material of choice for mass fabrication of electronics. This is in contrast to photonics, where passive optical components in silicon have only recently been realized. The slow progress within silicon optoelectronics, where electronic and optical functionalities can be integrated into monolithic components based on the versatile silicon platform, is due to the limited active optical properties of silicon. Recently, however, a continuous-wave Raman silicon laser was demonstrated; if an effective modulator could also be realized in silicon, data processing and transmission could potentially be performed by all-silicon electronic and optical components. Here we have discovered that a significant linear electro-optic effect is induced in silicon by breaking the crystal symmetry. The symmetry is broken by depositing a straining layer on top of a silicon waveguide, and the induced nonlinear coefficient, chi(2) approximately 15 pm V(-1), makes it possible to realize a silicon electro-optic modulator. The strain-induced linear electro-optic effect may be used to remove a bottleneck in modern computers by replacing the electronic bus with a much faster optical alternative.

665 citations


Network Information
Related Topics (5)
Transistor
138K papers, 1.4M citations
94% related
Silicon
196K papers, 3M citations
88% related
Chemical vapor deposition
69.7K papers, 1.3M citations
86% related
Amplifier
163.9K papers, 1.3M citations
85% related
Substrate (electronics)
116.1K papers, 1.3M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023325
2022767
2021282
2020372
2019462
2018492