scispace - formally typeset
Search or ask a question
Topic

Silicon oxide

About: Silicon oxide is a research topic. Over the lifetime, 22220 publications have been published within this topic receiving 260986 citations.


Papers
More filters
Patent
12 Oct 2004
TL;DR: In this paper, a reformation process is performed by annealing the silicon oxide film while exposing the silicon dioxide film to oxygen radicals and hydroxyl group radicals, and the reformation is completed by exposing the film to the radicals.
Abstract: A method for forming a silicon oxide film includes disposing a silicon oxide film on a surface of a target substrate, and performing a reformation process on the silicon oxide film. The reformation process is performed by annealing the silicon oxide film while exposing the silicon oxide film to oxygen radicals and hydroxyl group radicals.

152 citations

Patent
24 Mar 2006
TL;DR: In this paper, a process is provided for depositing an silicon oxide film on a substrate disposed in a process chamber, where a process gas that includes a halogen source, a fluent gas, a silicon source, and an oxidizing gas reactant is flowed into the process chamber.
Abstract: A process is provided for depositing an silicon oxide film on a substrate disposed in a process chamber. A process gas that includes a halogen source, a fluent gas, a silicon source, and an oxidizing gas reactant is flowed into the process chamber. A plasma having an ion density of at least 10 11 ions/cm 3 is formed from the process gas. The silicon oxide film is deposited over the substrate with a halogen concentration less than 1.0%. The silicon oxide film is deposited with the plasma using a process that has simultaneous deposition and sputtering components. The flow rate of the halogen source to the process chamber to the flow rate of the silicon source to the process chamber is substantially between 0.5 and 3.0.

152 citations

Journal ArticleDOI
06 Aug 2010-ACS Nano
TL;DR: An original way is reported on, taking place at room temperature and ambient pressure, to replace the silicon oxide shell of luminescent Si nanocrystals with capping involving organic residues with properties fully comparable with direct band gap semiconductor nanoparticles.
Abstract: Silicon nanocrystals are an extensively studied light-emitting material due to their inherent biocompatibility and compatibility with silicon-based technology. Although they might seem to fall behind their rival, namely, direct band gap based semiconductor nanocrystals, when it comes to the emission of light, room for improvement still lies in the exploitation of various surface passivations. In this paper, we report on an original way, taking place at room temperature and ambient pressure, to replace the silicon oxide shell of luminescent Si nanocrystals with capping involving organic residues. The modification of surface passivation is evidenced by both Fourier transform infrared spectroscopy and nuclear magnetic resonance measurements. In addition, single-nanocrystal spectroscopy reveals the occurrence of a systematic fine structure in the emission single spectra, which is connected with an intrinsic property of small nanocrystals since a very similar structure has recently been observed in specially p...

152 citations

Patent
14 Nov 2001
TL;DR: In this paper, multiple sequential processes are conducted in situ in a single-wafer processing chamber, particularly for forming ultrathin dielectric stacks of high quality, and the chamber exhibits single-pass, laminar gas flow, facilitating safe and clean sequential processing.
Abstract: Multiple sequential processes are conducted in situ in a single-wafer processing chamber, particularly for forming ultrathin dielectric stacks of high quality. The chamber exhibits single-pass, laminar gas flow, facilitating safe and clean sequential processing. Furthermore, a remote plasma source widens process windows, permitting isothermal sequential processing and thereby reducing the transition time for temperature ramping between in situ steps. In exemplary processes, extremely thin interfacial silicon oxide, nitride and/or oxynitride is grown, followed by in situ silicon nitride deposition. Cleaning, anneal and electrode deposition can also be conducted in situ, reducing transition time without commensurate loss in reaction rates.

150 citations

Patent
12 May 1995
TL;DR: In this article, the use of nitrogen doped amorphous silicon as an electrode material for a semiconductor integrated circuit is described and a preferred embodiment is a single transistor flash EPROM cell is disclosed having a tunnel dielectric (202), a floating gate (206), an intergate dielectrics having three layers (208, 210, 212), and a control gate (218).
Abstract: The use of nitrogen doped amorphous silicon as an electrode material for a semiconductor integrated circuit is described. A preferred embodiment is a single transistor flash EPROM cell is disclosed having a tunnel dielectric (202), a floating gate (206), an intergate dielectric having three layers (208, 210, 212), and a control gate (218). The floating gate (206) is composed of in-situ nitrogen doped amorphous silicon. Due to the nitrogen doping the floating gate (206) retains its microcrystalline structure under high temperatures, eliminating large grain boundaries in the floating gate (206). As a result, arrays composed of the disclosed EPROM cell have improved memory cell threshold (V TM ) distributions. In addition, silicon oxide grown from the the floating gate (206) has fewer stress induced defects reducing leakage paths that contribute to data retention errors. An alternate embodiment uses nitrogen doped amorphous silicon as the capacitor plates (304 and 306) in a DRAM cell (300). The nitrogen doped amorphous silicon oxidizes at a slower rate than undoped amorphous silicon and has less inherent stress resulting in thinner a capacitor dielectric (308) of fewer defects. The capacitor plates (304 and 306) maintain their microcrystalline structure throughout subsequent temperature cycling resulting in increased capacitor area.

150 citations


Network Information
Related Topics (5)
Thin film
275.5K papers, 4.5M citations
96% related
Silicon
196K papers, 3M citations
94% related
Band gap
86.8K papers, 2.2M citations
93% related
Amorphous solid
117K papers, 2.2M citations
92% related
Oxide
213.4K papers, 3.6M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202323
202253
2021199
2020524
2019649
2018621