scispace - formally typeset


Similarity solution

About: Similarity solution is a(n) research topic. Over the lifetime, 2074 publication(s) have been published within this topic receiving 59790 citation(s).

More filters
Journal ArticleDOI
Abstract: We consider the problem of the gravitational collapse of isothermal spheres by applying the similarity method to the gas-dynamic flow. We argue that a previous solution obtained by Larson and Penston to describe the stages prior to core formation is physically artificial; however, we find that the flow following core formation does exhibit self-similar properties.The latter similarity solution shows that the inflow in the dense central regions proceeds virtually at free-fall before the material is arrested by a strong radiating shock upon impact with the surface of the core. Two types of similarity solutions are obtained: one is the prototype for starting states which correspond to unstable hydrostatic equilibrium; the other, for states where the mass of the cloud slightly exceeds the maximum limit allowable for hydrostatic equilibrium. In both cases, an r/sup -2/ law holds for the density distribution in the static or nearly static outer envelope, and an r/sup -3///sup 2/ law holds for the freely falling inner envelope. Rapid infall is initiated at the head of the expansion wave associated with the dropping of the central regions from beneath the envelope. A numerical example is presented which is shown to be in good agreement with the envelopemore » dynamics obtained in previous studies of star formation using hydrodynamic codes.« less

1,680 citations

Journal ArticleDOI
Abstract: The detailed structure of the interaction of a strong stellar wind with the interstellar medium is presented. First, an adiabatic similarity solution is given which is applicable at early times. Second, a similarity solution is derived which includes the effects of thermal conduction between the hot (about 1 million K) interior and the cold shell of swept-up interstellar matter. This solution is then modified to include the effects of radiative energy losses. The evolution of an interstellar bubble is calculated, including the radiative losses. The quantitative results for the outer-shell radius and velocity and the column density of highly ionized species such as O VI are within a factor 2 of the approximate results of Castor, McCray, and Weaver (1975). The effect of stellar motion on the structure of a bubble, the hydrodynamic stability of the outer shell, and the observable properties of the hot region and the outer shell are discussed.

1,545 citations

Journal ArticleDOI
Abstract: Rock, snow and ice masses are often dislodged on steep slopes of mountainous regions. The masses, which typically are in the form of innumerable discrete blocks or granules, initially accelerate down the slope until the angle of inclination of the bed approaches the horizontal and bed friction eventually brings them to rest. The present paper describes an initial investigation which considers the idealized problem of a finite mass of material released from rest on a rough inclined plane. The granular mass is treated as a frictional Coulomb-like continuum with a Coulomb-like basal friction law. Depth-averaged equations of motion are derived; they bear a superficial resemblance to the nonlinear shallow-water wave equations. Two similarity solutions are found for the motion. They both are of surprisingly simple analytical form and show a rather unanticipated behaviour. One has the form of a pile of granular material in the shape of a parabolic cap and the other has the form of an M-wave with vertical faces at the leading and trailing edges. The linear stability of the similarity solutions is studied. A restricted stability analysis, in which the spread is left unperturbed shows them to be stable, suggesting that mathematically both are possible asymptotic wave forms. Two numerical finite-difference schemes, one of Lagrangian, the other of Eulerian type, are presented. While the Eulerian technique is able to reproduce the M-wave similarity solution, it appears to give spurious results for more general initial conditions and the Lagrangian technique is best suited for the present problem. The numerical predictions are compared with laboratory experiments of Huber (1980) involving the motion of gravel released from rest on a rough inclined plane. Although in these experiments the continuum approximation breaks down at large times when the gravel layer is only a few particle diameters thick, the general features of the development of the gravel mass are well predicted by the numerical solutions.

1,388 citations

Journal ArticleDOI
Abstract: A fluid dynamical treatment of an ultra‐relativistic spherical blast wave enclosed by a strong shock is presented. A simple similarity solution describing the explosion of a fixed amount of energy in a uniform medium is derived, and this is generalized to include cases in which power is supplied by a central source and the density of the external medium varies with radius. Radiative shocks, in which the escaping photons carry away momentum as well as energy, are also discussed. Formulas that interpolate between the non‐ and ultra‐relativistic limits are proposed.

1,098 citations

Journal ArticleDOI
Abstract: The natural convective boundary-layer flow of a nanofluid past a vertical plate is studied analytically. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. A similarity solution is presented. This solution depends on a Lewis number Le, a buoyancy-ratio number Nr, a Brownian motion number Nb, and a thermophoresis number Nt. For various values of Pr and Le, the variation of the reduced Nusselt number with Nr, Nb and Nt is expressed by correlation formulas. It was found that the reduced Nusselt number is a decreasing function of each of Nr, Nb and Nt.

1,077 citations

Network Information
Related Topics (5)
Reynolds number

68.4K papers, 1.6M citations

89% related

112.1K papers, 2.7M citations

88% related
Boundary layer

64.9K papers, 1.4M citations

87% related
Partial differential equation

70.8K papers, 1.6M citations

87% related
Boundary value problem

145.3K papers, 2.7M citations

84% related
No. of papers in the topic in previous years