scispace - formally typeset
Search or ask a question
Topic

Simplex algorithm

About: Simplex algorithm is a research topic. Over the lifetime, 4288 publications have been published within this topic receiving 146977 citations. The topic is also known as: simplex method.


Papers
More filters
Journal ArticleDOI
TL;DR: A method is described for the minimization of a function of n variables, which depends on the comparison of function values at the (n 41) vertices of a general simplex, followed by the replacement of the vertex with the highest value by another point.
Abstract: A method is described for the minimization of a function of n variables, which depends on the comparison of function values at the (n 41) vertices of a general simplex, followed by the replacement of the vertex with the highest value by another point. The simplex adapts itself to the local landscape, and contracts on to the final minimum. The method is shown to be effective and computationally compact. A procedure is given for the estimation of the Hessian matrix in the neighbourhood of the minimum, needed in statistical estimation problems.

27,271 citations

Journal ArticleDOI
TL;DR: This paper presents convergence properties of the Nelder--Mead algorithm applied to strictly convex functions in dimensions 1 and 2, and proves convergence to a minimizer for dimension 1, and various limited convergence results for dimension 2.
Abstract: The Nelder--Mead simplex algorithm, first published in 1965, is an enormously popular direct search method for multidimensional unconstrained minimization. Despite its widespread use, essentially no theoretical results have been proved explicitly for the Nelder--Mead algorithm. This paper presents convergence properties of the Nelder--Mead algorithm applied to strictly convex functions in dimensions 1 and 2. We prove convergence to a minimizer for dimension 1, and various limited convergence results for dimension 2. A counterexample of McKinnon gives a family of strictly convex functions in two dimensions and a set of initial conditions for which the Nelder--Mead algorithm converges to a nonminimizer. It is not yet known whether the Nelder--Mead method can be proved to converge to a minimizer for a more specialized class of convex functions in two dimensions.

7,141 citations

Book
01 Jan 1963
TL;DR: This classic book looks at a wealth of examples and develops linear programming methods for their solutions and begins by introducing the basic theory of linear inequalities and describes the powerful simplex method used to solve them.
Abstract: In real-world problems related to finance, business, and management, mathematicians and economists frequently encounter optimization problems. In this classic book, George Dantzig looks at a wealth of examples and develops linear programming methods for their solutions. He begins by introducing the basic theory of linear inequalities and describes the powerful simplex method used to solve them. Treatments of the price concept, the transportation problem, and matrix methods are also given, and key mathematical concepts such as the properties of convex sets and linear vector spaces are covered."The author of this book was the main force in establishing a new mathematical discipline, and he has contributed to its further development at every stage and from every angle. This volume ... is a treasure trove for those who work in this field--teachers, students, and users alike. Its encyclopaedic coverage, due in part to collaboration with other experts, makes it an absolute must."--S. Vajda, Zentralblatt fYr Mathematik und ihre Grenzgebiete

5,679 citations

Journal ArticleDOI
Narendra Karmarkar1
TL;DR: It is proved that given a polytopeP and a strictly interior point a εP, there is a projective transformation of the space that mapsP, a toP′, a′ having the following property: the ratio of the radius of the smallest sphere with center a′, containingP′ to theradius of the largest sphere withCenter a′ contained inP′ isO(n).
Abstract: We present a new polynomial-time algorithm for linear programming. In the worst case, the algorithm requiresO(n 3.5 L) arithmetic operations onO(L) bit numbers, wheren is the number of variables andL is the number of bits in the input. The running-time of this algorithm is better than the ellipsoid algorithm by a factor ofO(n 2.5). We prove that given a polytopeP and a strictly interior point a eP, there is a projective transformation of the space that mapsP, a toP′, a′ having the following property. The ratio of the radius of the smallest sphere with center a′, containingP′ to the radius of the largest sphere with center a′ contained inP′ isO(n). The algorithm consists of repeated application of such projective transformations each followed by optimization over an inscribed sphere to create a sequence of points which converges to the optimal solution in polynomial time.

4,806 citations

Journal ArticleDOI
TL;DR: A technique is presented for the decomposition of a linear program that permits the problem to be solved by alternate solutions of linear sub-programs representing its several parts and a coordinating program that is obtained from the parts by linear transformations.
Abstract: A technique is presented for the decomposition of a linear program that permits the problem to be solved by alternate solutions of linear sub-programs representing its several parts and a coordinating program that is obtained from the parts by linear transformations. The coordinating program generates at each cycle new objective forms for each part, and each part generates in turn from its optimal basic feasible solutions new activities columns for the interconnecting program. Viewed as an instance of a “generalized programming problem” whose columns are drawn freely from given convex sets, such a problem can be studied by an appropriate generalization of the duality theorem for linear programming, which permits a sharp distinction to be made between those constraints that pertain only to a part of the problem and those that connect its parts. This leads to a generalization of the Simplex Algorithm, for which the decomposition procedure becomes a special case. Besides holding promise for the efficient computation of large-scale systems, the principle yields a certain rationale for the “decentralized decision process” in the theory of the firm. Formally the prices generated by the coordinating program cause the manager of each part to look for a “pure” sub-program analogue of pure strategy in game theory, which he proposes to the coordinator as best he can do. The coordinator finds the optimum “mix” of pure sub-programs using new proposals and earlier ones consistent with over-all demands and supply, and thereby generates new prices that again generates new proposals by each of the parts, etc. The iterative process is finite.

2,281 citations


Network Information
Related Topics (5)
Optimization problem
96.4K papers, 2.1M citations
85% related
Robustness (computer science)
94.7K papers, 1.6M citations
81% related
Fuzzy logic
151.2K papers, 2.3M citations
80% related
Artificial neural network
207K papers, 4.5M citations
79% related
Support vector machine
73.6K papers, 1.7M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202349
2022123
202185
202082
201988
201896