scispace - formally typeset

Topic

SimRank

About: SimRank is a(n) research topic. Over the lifetime, 250 publication(s) have been published within this topic receiving 21163 citation(s).


Papers
More filters
Proceedings Article
11 Nov 1999
TL;DR: This paper describes PageRank, a mathod for rating Web pages objectively and mechanically, effectively measuring the human interest and attention devoted to them, and shows how to efficiently compute PageRank for large numbers of pages.
Abstract: The importance of a Web page is an inherently subjective matter, which depends on the readers interests, knowledge and attitudes. But there is still much that can be said objectively about the relative importance of Web pages. This paper describes PageRank, a mathod for rating Web pages objectively and mechanically, effectively measuring the human interest and attention devoted to them. We compare PageRank to an idealized random Web surfer. We show how to efficiently compute PageRank for large numbers of pages. And, we show how to apply PageRank to search and to user navigation.

13,512 citations

Proceedings ArticleDOI
23 Jul 2002
TL;DR: A complementary approach, applicable in any domain with object-to-object relationships, that measures similarity of the structural context in which objects occur, based on their relationships with other objects is proposed.
Abstract: The problem of measuring "similarity" of objects arises in many applications, and many domain-specific measures have been developed, e.g., matching text across documents or computing overlap among item-sets. We propose a complementary approach, applicable in any domain with object-to-object relationships, that measures similarity of the structural context in which objects occur, based on their relationships with other objects. Effectively, we compute a measure that says "two objects are similar if they are related to similar objects:" This general similarity measure, called SimRank, is based on a simple and intuitive graph-theoretic model. For a given domain, SimRank can be combined with other domain-specific similarity measures. We suggest techniques for efficient computation of SimRank scores, and provide experimental results on two application domains showing the computational feasibility and effectiveness of our approach.

1,879 citations

Proceedings ArticleDOI
20 May 2003
TL;DR: The approach enables incremental computation, so that the construction of personalized views from partial vectors is practical at query time, and experimental results demonstrate the effectiveness and scalability of the techniques.
Abstract: Recent web search techniques augment traditional text matching with a global notion of "importance" based on the linkage structure of the web, such as in Google's PageRank algorithm. For more refined searches, this global notion of importance can be specialized to create personalized views of importance--for example, importance scores can be biased according to a user-specified set of initially-interesting pages. Computing and storing all possible personalized views in advance is impractical, as is computing personalized views at query time, since the computation of each view requires an iterative computation over the web graph. We present new graph-theoretical results, and a new technique based on these results, that encode personalized views as partial vectors. Partial vectors are shared across multiple personalized views, and their computation and storage costs scale well with the number of views. Our approach enables incremental computation, so that the construction of personalized views from partial vectors is practical at query time. We present efficient dynamic programming algorithms for computing partial vectors, an algorithm for constructing personalized views from partial vectors, and experimental results demonstrating the effectiveness and scalability of our techniques.

1,299 citations

Journal ArticleDOI
TL;DR: A method to detect co-saliency from an image pair that may have some objects in common and employ a normalized single-pair SimRank algorithm to compute the similarity score is introduced.
Abstract: In this paper, we introduce a method to detect co-saliency from an image pair that may have some objects in common. The co-saliency is modeled as a linear combination of the single-image saliency map (SISM) and the multi-image saliency map (MISM). The first term is designed to describe the local attention, which is computed by using three saliency detection techniques available in literature. To compute the MISM, a co-multilayer graph is constructed by dividing the image pair into a spatial pyramid representation. Each node in the graph is described by two types of visual descriptors, which are extracted from a representation of some aspects of local appearance, e.g., color and texture properties. In order to evaluate the similarity between two nodes, we employ a normalized single-pair SimRank algorithm to compute the similarity score. Experimental evaluation on a number of image pairs demonstrates the good performance of the proposed method on the co-saliency detection task.

303 citations

Proceedings ArticleDOI
02 Nov 2009
TL;DR: A new similarity measure, P-Rank (Penetrating Rank), toward effectively computing the structural similarities of entities in real information networks and a fixed point algorithm to reinforce structural similarity of vertex pairs beyond the localized neighborhood scope toward the entire information network is proposed.
Abstract: With the ubiquity of information networks and their broad applications, the issue of similarity computation between entities of an information network arises and draws extensive research interests. However, to effectively and comprehensively measure "how similar two entities are within an information network" is nontrivial, and the problem becomes even more challenging when the information network to be examined is massive and diverse. In this paper, we propose a new similarity measure, P-Rank (Penetrating Rank), toward effectively computing the structural similarities of entities in real information networks. P-Rank enriches the well-known similarity measure, SimRank, by jointly encoding both in- and out-link relationships into structural similarity computation. P-Rank is proven to be a unified structural similarity framework, under which all state-of-the-art similarity measures, including CoCitation, Coupling, Amsler and SimRank, are just its special cases. Based on its recursive nature of P-Rank, we propose a fixed point algorithm to reinforce structural similarity of vertex pairs beyond the localized neighborhood scope toward the entire information network. Our experimental studies demonstrate the power of P-Rank as an effective similarity measure in different information networks. Meanwhile, under the same time/space complexity, P-Rank outperforms SimRank as a comprehensive and more meaningful structural similarity measure, especially in large real information networks.

211 citations

Network Information
Related Topics (5)
Web page

50.3K papers, 975.1K citations

77% related
Graph (abstract data type)

69.9K papers, 1.2M citations

77% related
Ontology (information science)

57K papers, 869.1K citations

77% related
Scalability

50.9K papers, 931.6K citations

74% related
Tree (data structure)

44.9K papers, 749.6K citations

74% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202115
202026
201916
201817
201719
201616