scispace - formally typeset
Search or ask a question
Topic

Single-cell analysis

About: Single-cell analysis is a research topic. Over the lifetime, 1959 publications have been published within this topic receiving 107537 citations. The topic is also known as: Single-cell analyses & single-cell profiling.


Papers
More filters
Journal ArticleDOI
21 May 2015-Cell
TL;DR: Drop-seq will accelerate biological discovery by enabling routine transcriptional profiling at single-cell resolution by separating them into nanoliter-sized aqueous droplets, associating a different barcode with each cell's RNAs, and sequencing them all together.

5,506 citations

Journal ArticleDOI
TL;DR: A droplet-based system that enables 3′ mRNA counting of tens of thousands of single cells per sample is described and sequence variation in the transcriptome data is used to determine host and donor chimerism at single-cell resolution from bone marrow mononuclear cells isolated from transplant patients.
Abstract: Characterizing the transcriptome of individual cells is fundamental to understanding complex biological systems. We describe a droplet-based system that enables 3′ mRNA counting of tens of thousands of single cells per sample. Cell encapsulation, of up to 8 samples at a time, takes place in ∼6 min, with ∼50% cell capture efficiency. To demonstrate the system’s technical performance, we collected transcriptome data from ∼250k single cells across 29 samples. We validated the sensitivity of the system and its ability to detect rare populations using cell lines and synthetic RNAs. We profiled 68k peripheral blood mononuclear cells to demonstrate the system’s ability to characterize large immune populations. Finally, we used sequence variation in the transcriptome data to determine host and donor chimerism at single-cell resolution from bone marrow mononuclear cells isolated from transplant patients. Single-cell gene expression analysis is challenging. This work describes a new droplet-based single cell RNA-seq platform capable of processing tens of thousands of cells across 8 independent samples in minutes, and demonstrates cellular subtypes and host–donor chimerism in transplant patients.

4,219 citations

Journal ArticleDOI
08 Apr 2016-Science
TL;DR: The cellular ecosystem of tumors is begin to unravel and how single-cell genomics offers insights with implications for both targeted and immune therapies is unraveled.
Abstract: To explore the distinct genotypic and phenotypic states of melanoma tumors, we applied single-cell RNA sequencing (RNA-seq) to 4645 single cells isolated from 19 patients, profiling malignant, immune, stromal, and endothelial cells. Malignant cells within the same tumor displayed transcriptional heterogeneity associated with the cell cycle, spatial context, and a drug-resistance program. In particular, all tumors harbored malignant cells from two distinct transcriptional cell states, such that tumors characterized by high levels of the MITF transcription factor also contained cells with low MITF and elevated levels of the AXL kinase. Single-cell analyses suggested distinct tumor microenvironmental patterns, including cell-to-cell interactions. Analysis of tumor-infiltrating T cells revealed exhaustion programs, their connection to T cell activation and clonal expansion, and their variability across patients. Overall, we begin to unravel the cellular ecosystem of tumors and how single-cell genomics offers insights with implications for both targeted and immune therapies.

3,061 citations

Journal ArticleDOI
21 May 2015-Cell
TL;DR: This work has developed a high-throughput droplet-microfluidic approach for barcoding the RNA from thousands of individual cells for subsequent analysis by next-generation sequencing, which shows a surprisingly low noise profile and is readily adaptable to other sequencing-based assays.

2,894 citations

Journal ArticleDOI
06 May 2011-Science
TL;DR: Single-cell “mass cytometry” analyses provide system-wide views of immune signaling in healthy human hematopoiesis, against which drug action and disease can be compared for mechanistic studies and pharmacologic intervention.
Abstract: Flow cytometry is an essential tool for dissecting the functional complexity of hematopoiesis. We used single-cell "mass cytometry" to examine healthy human bone marrow, measuring 34 parameters simultaneously in single cells (binding of 31 antibodies, viability, DNA content, and relative cell size). The signaling behavior of cell subsets spanning a defined hematopoietic hierarchy was monitored with 18 simultaneous markers of functional signaling states perturbed by a set of ex vivo stimuli and inhibitors. The data set allowed for an algorithmically driven assembly of related cell types defined by surface antigen expression, providing a superimposable map of cell signaling responses in combination with drug inhibition. Visualized in this manner, the analysis revealed previously unappreciated instances of both precise signaling responses that were bounded within conventionally defined cell subsets and more continuous phosphorylation responses that crossed cell population boundaries in unexpected manners yet tracked closely with cellular phenotype. Collectively, such single-cell analyses provide system-wide views of immune signaling in healthy human hematopoiesis, against which drug action and disease can be compared for mechanistic studies and pharmacologic intervention.

2,147 citations


Network Information
Related Topics (5)
Regulation of gene expression
85.4K papers, 5.8M citations
86% related
Cellular differentiation
90.9K papers, 6M citations
86% related
Signal transduction
122.6K papers, 8.2M citations
84% related
Transcription factor
82.8K papers, 5.4M citations
84% related
RNA
111.6K papers, 5.4M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023115
2022235
2021188
2020206
2019209
2018195