scispace - formally typeset
Search or ask a question
Topic

Single cell sequencing

About: Single cell sequencing is a research topic. Over the lifetime, 1064 publications have been published within this topic receiving 82543 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies.
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V−SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online (http://bioinf.spbau.ru/spades). It is distributed as open source software.

16,859 citations

01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal ArticleDOI
21 May 2015-Cell
TL;DR: Drop-seq will accelerate biological discovery by enabling routine transcriptional profiling at single-cell resolution by separating them into nanoliter-sized aqueous droplets, associating a different barcode with each cell's RNAs, and sequencing them all together.

5,506 citations

Journal ArticleDOI
21 May 2015-Cell
TL;DR: This work has developed a high-throughput droplet-microfluidic approach for barcoding the RNA from thousands of individual cells for subsequent analysis by next-generation sequencing, which shows a surprisingly low noise profile and is readily adaptable to other sequencing-based assays.

2,894 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented a detailed protocol for Smart-seq2 that allows the generation of full-length cDNA and sequencing libraries by using standard reagents, and the entire protocol takes ∼2 d from cell picking to having a final library ready for sequencing; sequencing will require an additional 1-3 d depending on the strategy and sequencer.
Abstract: Emerging methods for the accurate quantification of gene expression in individual cells hold promise for revealing the extent, function and origins of cell-to-cell variability. Different high-throughput methods for single-cell RNA-seq have been introduced that vary in coverage, sensitivity and multiplexing ability. We recently introduced Smart-seq for transcriptome analysis from single cells, and we subsequently optimized the method for improved sensitivity, accuracy and full-length coverage across transcripts. Here we present a detailed protocol for Smart-seq2 that allows the generation of full-length cDNA and sequencing libraries by using standard reagents. The entire protocol takes ∼2 d from cell picking to having a final library ready for sequencing; sequencing will require an additional 1-3 d depending on the strategy and sequencer. The current limitations are the lack of strand specificity and the inability to detect nonpolyadenylated (polyA(-)) RNA.

2,845 citations


Network Information
Related Topics (5)
Regulation of gene expression
85.4K papers, 5.8M citations
84% related
Transcription factor
82.8K papers, 5.4M citations
83% related
Gene
211.7K papers, 10.3M citations
82% related
Gene expression
113.3K papers, 5.5M citations
82% related
Signal transduction
122.6K papers, 8.2M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202327
202299
2021152
2020125
201974
201886